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Introduction to Physics 

 

Physics is the most fundamental of the sciences. Its goal is to learn how the Universe 

works at the most fundamental level—and to discover the basic laws by which it operates. 

Theoretical physics concentrates on developing the theory and mathematics of these laws, 

while applied physics focuses attention on the application of the principles of physics to 

practical problems. Experimental physics lies at the intersection of physics and engineering; 

experimental physicists have the theoretical knowledge of theoretical physicists, and they 

know how to build and work with scientific equipment. 

 

Physics is divided into a number of sub-fields, and physicists are trained to have some 

expertise in all of them. This variety is what makes physics one of the most interesting of the 

sciences—and it makes people with physics training very versatile in their ability to do work 

in many different technical fields. 

 

The major fields of physics are: 

• Classical mechanics is the study the motion of bodies according to Newton’s laws of 

motion, and is the subject of this course. 

• Electricity and magnetism are two closely related phenomena that are together 

considered a single field of physics. 

• Quantum mechanics describes the peculiar motion of very small bodies (atomic sizes 

and smaller). 

• Optics is the study of light. 

• Acoustics is the study of sound. 

• Thermodynamics and statistical mechanics are closely related fields that study the 

nature of heat. 

• Solid-state physics is the study of solids—most often crystalline metals. 

• Plasma physics is the study of plasmas (ionized gases). 

• Nanoscience and Nanotechnology is the new emerging field of physics 

• Atomic, nuclear, and particle physics study of the atom, the atomic nucleus, and the 

particles that make up the atom. 



• Relativity includes Albert Einstein’s theories of special and general relativity. Special 

relativity describes the motion of bodies moving at very high speeds (near the speed 

of light), while general relativity is Einstein’s theory of gravity. 

• The fields of cross-disciplinary physics combine physics with other sciences. These 

include astrophysics (physics of astronomy), geophysics (physics of geology), 

biophysics (physics of biology), chemical physics (physics of chemistry), and 

mathematical physics (mathematical theories related to physics). 

 

Besides acquiring knowledge of physics for its own sake, the study of physics will 

give you a broad technical background and set of problem-solving skills that you can apply to 

wide variety of other fields. Some students of physics go on to study more advanced physics, 

while others find ways to apply their knowledge of physics to such diverse subjects as 

mathematics, engineering, biology, medicine, and finance. 

 

In this Book, there are five Blocks. Block I and II deals with Atomics physics and 

Atomic Spectra, Block III and IV deals with X-rays and Photo electric effect and, Block V 

deals with Crystal physics. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Syllabus  

BPHY-31: ATOMIC AND SOLID STATE PHYSICS 

BLOCK-I 

 Excitation of atoms – Critical Potential – Excitation Potential – Ionisation Potential – 

Experimental determination of critical potential – Frank and Hertz`s method – Sommerfield 

atom model – Qualitative treatment – Derivation of condition for the allowed elliptical orbits 

– Vector atom model - Quantum numbers associated with Vector atom model-Coupling 

schemes – L-S and J J coupling _ Pauli’s exclusion principle and verification . 

BLOCK -II 

Magnetic dipole moments due to orbital and spin motion – Selection rule for electron 

transition – Intensity rules – Interval rule – Fine structure of D line – Zeeman effect – Normal 

and Anomalous (Experimental study and results) – Debye’s theory of normal Zeeman effect 

– Lorentz theory of anomalous Zeeman effect - Stark Effect (definition only). 

BLOCK-III 

Origin of X-Rays – Polarization of x-rays-Absorption of X-Rays – Continuous, 

Characteristic X-Rays –Mosley’s Law –Mosley’s Law and its importance - Bragg’s law – 

Bragg X-ray spectrometer –Powder crystal method –Rotating Crystal method-Compton 

Effect –  Theory – Experimental Verification. 

BLOCK-IV 

Photo electric effect – laws of photoelectric emission -Einstein’s photo electric 

equation- Richardson and Compton Experiment – Millikan’s Experiment – verification of  

Einstein’s equations –determination of Plank’s constant-Photo electric cells -  Photo 

Emissive, Photo Voltaic, Photo Conductive cells – Photo Multiplier – Applications of photo 

electric cells. 

BLOCK-V 

Types of solids – Crystalline and Amorphous solids -  Space Lattice – The Basis and 

the crystal structure unit cell and Primitive lattice cell – Lattice parameter – Symmetry 

elements in a cubic crystals -  Point groups – Bravais lattice in two dimension – Seven crystal 

systems – coordination number for SC, BCC and FCC - Miller Indices – Features of miller 

indices – Crystal Structure – Nacl, Diamond, Zinc Blende,KCl. 

 

 

 

 

 



Contents 

 

Chapter Title Page No 

Block I Atomic Physics   1-48 

Block II Atomic Spectra 49-92 

Block III X- Rays  93- 121 

Block IV Photo Electric effect 122-137 

Block V Crystal Physics 138- 183 

 



Block I 

Atomic Physics 

STRUCTURE 

Overview 

Learning Objectives 

1.1 Introduction 

1.2 Atom models 

1.3 Excitation of atoms – (Critical Potential, Excitation 

Potential, Ionisation Potential) 

1.4 Frank and Hertz`s method 

1.5 Somerfield atom model 

1.6 Vector atom model 

1.7 L-S and J J coupling

1.8 Pauli’s exclusion principle and verification. 

Summary 

OVERVIEW 

We will begin this Unit by describing Atomic physics, and in this context, we 

will distinguish between various atomic models. We will then touch LS and 

JJ coupling. In addition, study about Pauli’s exclusion principle  
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LEARNING OBJECTIVES 

After completing this Unit, you should be able to: 

• differentiate between various atom models;

• Derive the condition for the allowed elliptical orbits in

sommerfield atom model

• Derive the relation for LS and JJ coupling

1.1 Introduction 

Speculations as to the structure of the atom date from the early years of 

the nineteenth century.  But the first insight into it was provided much 

later, in the early part of the last century after the discovery of the 

positive rays and the electrons.  However, the distribution of these 

charges was not properly understood at the time.  To explain the 

accumulated spectral data, several atomic models, one after another, 

were proposed e.g., Thomson’s plum-pudding model, Rutherford’s 

nuclear model etc.  The instability of the Rutherford’s model gave the 

clue that finally led to a fairly successful model developed by Niels 

Bohr in 1913.  While it helped to explain a good number of atomic 

phenomena, the model is not strictly valid from the standpoint of 

quantum mechanics.  Essentially, we shall describe in this chapter the 

Bohr model in details the story of its success and failure.  

Atomic spectra 

Spectral lines emitted by individual atoms consist of a discrete 

set of wavelengths characteristic of the element concerned.    This 

phenomenon has been utilized in the spectroscopic analysis and 

identification of elements.  The spectra of atoms in general, however, 

are very complicated. 

To build up the atom model, therefore, Bohr focussed his 

attention on the simplest element hydrogen.  Its spectrum (Fig. 1) 

consists of lines that gradually crowd near UV-region and converge 
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towards a short wavelength limit.  This is a common feature of all 

atomic spectra.  The position of the limit is only different for different 

types of atoms. 

Fig 1 

In an attempt to systematize the study of spectral line, Balmer 

(1885) showed purely empirically that the reciprocals of the 

wavelengths (not the wavelengths) of the series lines of hydrogen 

satisfy the following relation. 

 = RH   : n = 3, 4, 5, … 

Where RH is known as Rydberg cocstant for hydrogen, having a value 

10967757 m-1.  The lines are successively called , ,  etc.  lines.  

The above series is called the Balmer series. 

Later other spectral series were found to exist and have been 

referred. 

1.2 ATOM MODELS 

Thomson’s model 

Thomson’s atom model (1907), known as plum-pudding model, assumes that 

the entire positive charge is distributed over a sphere of radius equal to the 

atomic radius   10-10 m.  In this homogeneous sphere of positive charge, the 

negatively charged point electrons are embedded in such a way, much like the 

plums in  pudding (Fig.4.2) neutral.  The electrons however are not at rest, but 

oscillate with definite frequencies about their mean positions. 
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Fig.2 

 

 The model appeared plausible and obviously could explain the 

ionization process.  But it suffered from a number of drawbacks.  It failed to 

explain the observed frequencies of optical spectra and the results of -ray 

scattering experiment of Geiger and Marsden.  The model was therefore 

abandoned in favour of the now generally accepted Rutherford’s planetary 

atom model. 

 

Rutherford’s nuclear atom model 

Rutherford’s nuclear model of the atom (1911) is an outcome of the scattering 

experiments of -particles conducted by his colleagues Geiger and Marsden.   

Fast -particles, doubly positively charge He++ ions, are emitted spontaneously 

from certain radioactive elements.  Based on the scattering experiment,  

Rutherford proposed  that the atom consists of a tiny but massive positively 

charged region, called the nucleus (nuclear radius  10-14 m) and cloud of 

negatively charged electrons surrounds the nucleus at a distance.  The 

dimensions of the atom being 10-10m, most of the space in the atom is empty.  

For neutral atoms, the charge on the extra nuclear electrons balances the 

positive charge of the nucleus. 

 Experiment in outline – The scattering experiment was conducted 

using thin foils of metals like gold.  The -particles were derived from a 

monoenergetic source of Po-214 placed behind a lead screen with a small hole 

in it.  The narrow pencil of -particles thus obtained was directed at a thin ( 6 

x 10-7m)  gold foil.  The scattered – particles were detected by the flash in 

ZnS-screen S which was movable.  A microscope M was used to observe and 

count the individual scintillations.  The experimental set-up is sketched 

schematically in  
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Fig.3. 

 Results – Most of the -particles were scattered through small angles, 

that is, passed almost straight through the foil.  The indicates that most of the 

space in an atom is empty.  A small fraction of -particles however was 

deviated through large angles, very few by even nearly 180  .  The large angle 

scattering was startling for calculation on the basis of Thomson’s model 

showed that the probability of scattering through angles as large as 90  was 

vanishingly small.  Rutherford proposed that large angle scattering suggests 

that -particles must have suffered much larger Coulomb force than what the 

distributed positive charge of Thomson model can bring forth.  He concluded 

that within the atom there was small but massive core (over 99.9% mass of the 

atom) carrying positive charge and called it the nucleus.  The electrons were 

assumed to be extra-nuclear, i.e., exist outside the nucleus.  Rutherford’s 

model is thus known as nuclear atom model. 

 To explain the stability of the atom, Rutherford assumed that electrons 

revolve round the nucleus, like planets revolving round the sun.  The 

electrostatic attraction between the nucleus and the extra-nuclear electrons 

provided the necessary centripetal force.  Mathematical derivation of 

Rutherfored’s -ray scattering formula has been made in a subsequent chapter. 

 Limitation of the model- The serious drawback of the model is that the 

atom as a whole cannot be stable.  To save the electron from being dragged 

into the nucleus due to electrostatic attraction, Rutherford assumed the circular 

motion of electrons, the centripetal force being provided by the electrostatic 

attraction.  But, unfortunately, uniform rotation is an accelerated motion and 

an accelerated charge, according to classical e.m. theory, radiates energy.  The 

consequent energy loss would make the electron spiral into the nucleus while 

emitting electromagnetic radiation of constantly increasing frequency.  The 
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time taken for the process is estimated to be about 10-88.  The Rutherford atom 

model cannot thus be stable.  Further, the constantly increasing frequency of 

radiation contradicts the experimental result that gives only line spectra.  

• It was at this stage that a yound Danish physicist,  Niels Bohr, 

appeared in the Scene in 1913.  The choice before him was to 

reject the Rutherford model or the classical electromagnetic 

theory.  He rejected the latter by daringly introducing the 

revolutionary concept of stationary states of atom. 

 

• Rutherford’s nuclear atom model and his scattering formula 

have been discussed at length in chapter:  Nuclear structure 

and General properties of nuclei. 

 

Bohr’s model of hydrogen atom 

 

To understand the complex hyderogen spectrum and interpret it in terms of 

Rutherford’s atom model, Bohr put forward a modified model, by (i) retaining 

the essential features of Rutherford’s model for H-atom in which a single 

electron of mass m rotates around the nucleus of charge +e. and (ii) by 

drawing on the quantum ideas of Planck and Einstcin.  This model is known as 

Bohr’s atom model in developing which Bohr proposed a number of bold and 

daring postulates. 

  

 Bohr’s postulates – The postulates of Bohr’s atom model for H-atom 

are 

 

1.  The electron resolves round the nucleus, under the influence of Coulomb 

attraction, only in certain definite circular orbits without radiating energy.  The 

possible discrete orbits are  called the stationary states or quantized orbits of 

the atom. 

2. The allowed stationary states are those for which the orbital angular 

momentum of the electron mvr is equal to an integral multiple of h(=h/2 ), i.e. 

 

    mvnrn = nh,  n = 1, 2, 3, …. 

 

    where rn  is the radius of the nth orbit. 
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3. Radiation of energy hv is either emitted or absorbed when transition of the 

electron     between two stationary states m and n of energy Em  and En 

respectively occurs.  When    such a transition does take place, the energy 

conservation principle dictates 

 

    hvnm =  Em   En 

 

Equation (1) is called Bohr’s  quantum condition and equation (2) is referred 

to as Bohr’s frequency rule. 

 

Radil of orbits – The Coulomb attraction F between the charge of electron 

and the nucleus provides the centripetal force mv2 / r required for circular 

motion. 

 

                                   F =  =  

 

where vn is the velocity of the electron in its orbit of radius rn 

 

   or,  =  

 

  

  rn =  4 0  =  = a0;  n = 1, 2, 3, … 

 

where a0 is the radius of the first orbit and is called the Bohr radius. 

 

 a0 =  = 0.53 x 10-10 m = 0.53 A 

 

 Velocity of electron , we get 

  

    vn  =  
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 Substituting the value of rn from (4.5.5), we have 

      vn  =  =  

• Both the radius of the orbit and the velocity of electron depend 

on the n-value.   

While rn is proportional to n2, the velocity is inversely proportional to n, 

implying that the electron in the innermost orbit has the highest velocity.  Then 

n is known as quantum number, specifically the principal quantum number.  In 

Bohr’s model n = 0 in excluded for if n = 0,  

rn =0 and the electron would go through the nucleus. 

 

 Total energy of electron:  Energy levels – In each allowed orbit, the 

electron will have a definite energy.  The total energy En of the electron in its 

nth orbit is the sum of its kinetic and potential energy.   

 

Kinetic energy,  T =  =  ,  

 

 

Potential energy, V = drn =   =   , using 

 

 Total energy, En = T +V =      =  

 

   

   =   ,  =     

 

It is interesting to note that the potential energy V is – 2T. 

 

The different energy levels are identified by the subscript n to E.  If the values 

of the constants are substituted. (4.5.8) reduces to 

 

        En  =  J =  Ev 
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• The energy of the electron within the atom is also quantized, 

i.e., can take only certain discrete values.  The quantization of 

angular momentum thus leads to the quantization of the total 

energy.  The allowed energy values for a quantized system are 

often called energy levels or energy states.  If these energy 

levels are plotted as horizontal lines separated by appropriate 

spacings, we get what is called energy-level diagram.  The 

energy levels are represented schematically in Fig..   The 

negative sign to the total energy is due to the fact that the 

potential energy is taken to be zero when the electron is at 

infinity.  It thus corresponds to a bound state implying that 

energy is required to remove the electron from the atom. 

 

The lowest energy level is the one for which n = 1 and is called the ground 

state and  

those corresponding to n = 2,3,4, … are the different excited states.  Energy of 

some of the excited state are 

 

 E1 = - 13.6Ev;  E2 = - 3.4 eV; E3 = - 1.5 eV, …., E  = 0  

 

Conventionally, the energy values are shown as horizontal lines in the energy 

level diagram.  There is a continuum of energy states above  = 0 (shaded 

part in Fig..4.) 

 

Fig 4 

 The level n =  corresponds to the series limit and a state in which 

the electron is completely removed.  The atom is said to be ionized.  The 

enegyt  required to remove the electron from the ground state, n = 1, of the 

atom is termed the ionization energy or the binding energy.  If more energy is 
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supplied to the electron, the excess over the binding energy will appear as the 

kinetic energy of the free electron. 

 

Hydrogen Spectrum 

 

At room temperature,  almost all the H-atoms will be in the ground state.   At 

higher temperature or during electric discharge, electrons may be in excited 

states.  But their lifetime in the excited states is short so that they make 

transitions to lower energy states emitting electromagnetic radiations of 

definite frequency.  There is no restriction on the change in n during the 

transition. 

 

 Let the electron make a transition from the initial state n1 (upper state) 

of energy Ei to a final state nf  (lower state) of energy Ef , then by applying the 

Bohr’s frequency rule, we obtain 

  

  V =   =    

 

 

Substituting the values of E's. 

 

In terms of wave number,  (defined by  = 1/ = v/c) 

 

    =  =    

 

     =   

Where  =   Rydberg constant for infinite nuclear mass. 

  

 



11 

Origin of spectral series  Now, the origin of different spectral series of  H-

atom can be easily understood from Bohr’s theory by substituting different 

values of ni and nf.  We give below the different prominent spectral series. 

1. Lyman series All transitions ending at nf = 1 give rise to the 

Lyman series.  The wave number of different lines of the series may be 

obtained from  relation . 

 

  =  =   ;  = 2, 3, 4, … 

 The Lyman series is in the ultraviolet region of e.m. spectrum. 

 

 2. Balmer series All transitions ending at nf  = 2 give rise to the 

Balmer series.  The spectral lines of the series are given by  

 

  =  =   ;  =  3, 4,5, … 

 

 The Balmer series lines appear in the visible region. 

  

 The first (ni = 3), the second (ni = 4), the third (ni = 5), etc. members of 

the series are called  etc. respectively. 

 

 3. Paschen series   =  =   ;  =  4,5,6 … 

 4. Brackett series  =  =   ;  =  5,6,7 … 

 5. Pfund series   =  =   ;  =  6,7,8, … 

 

 The last three series are in the infrared region.   Few series are 

illustrated in Fig.4.4. 

 

• If the transition is caused from a lower energy level to a 

higher one by e.m. radiation of right energy, it will give rise to 

absorption spectrum, observed as dark lines of the same 

frequencies as emission lines. 
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Ritz combination principle 

 

The Ritz combination principle states that certain frequencies in the emission 

spectrum can be summed to give other frequencies.  Bohr’s model is not only 

consistent with it but also provides a proper explanation for it. 

 

If the electron is initially in an excited state, any n = 3, then it may transit 

downward from n=3 level to n=1 level directly.  Alternatively, it may first 

transit from n=3  n=2,  and then from n = 2 3  n=1.  In the first case, the 

frequency v31 of the photon emitted is given by 

  hv31 = E3 – E1 

 

 

 

Fig.5 

 

In the second case, two photons of frequency v32 and v21 would be emitted and  

 hv32 = E3 – E2 ;  hv21 = E2 – E1 

 

From Fig..5. it is quite apparent that v31 = v32 + v21.  The relation also follows  

 

hv31 = E3 – E1 = (E3 – E2) + (E2 – E1)  = hv32 + hv21 

 

 or, v31 = v32 + v21, and so on. 

 

Generalising, we may write: hvsm = Es - Em 

 

            = (Es – En) + (En – Em) 



13 

      

            = hvsn + hvnm 

 

Where s  n, n  m.  But all the combinations predicted by the equation 

(4.7.3) are not actually observed and some selection rules are imposed to 

eliminate certain combinations. 

 

Correction for finite nuclear mass 

 

In the Bohr’s model discussed, the nucleus is considered stationary, i.e., it is 

assumed to be infinitely massive compared to electron.  However, a nucleus of 

finite mass cannot be at rest.  To modify the model on this account is simple. 

 

 Both the electron of mass m and the nucleus of mass M move about 

the common centre of mass 0 of the electron nucleus composite system.  Thus 

the kinetic energy must include an additional term for the motion of the 

nucleus. 

 

 

As the total linear momentum of the atom is zero, 

 

  MV + mv = 0  MV = -mv = p, say 

  

Kinetic energy of  H-atom =   +  =   

  

 = p2 / 2  

 

Where  =   = the reduced mass. 

 

Hence, to take into account the motion of the nucleus, the electron mass m is 

to be replaced by the reduced mass . 

 

  En =  
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The expression for Rydberg constant would now become 

 

 RH =  =  

 

 

Discovery of heavy hydrogen (deuterium) 

 

The correction for the nuclear motion led to the discovery of heavy hydrogen 

or deuterium, an isotope of ordinary hydrogen having atomic mass almost 

double the mass the ordinary hydrogen (Mp  2MH) by H.C. Urey in 1932. 

 

While ordinary hydrogen (1H) atom has only a proton in the nucleus, 

deuterium nucleus has a neutron in addition to proton.  Since MD  MH, RD is 

slightly greater than RH, 

 

 RH  =    RD = =  

 

So, the spectral lines of  2H will get slightly shifted to the shorter wavelength 

side compared to those of 1H.  Urey and co-workers observed faint companion 

lines on the shorter wavelength side of each of the hydrogen lines, whence 

they concluded that the fainter lines were due to a hitherto unknown isotope of 

hydrogen. 

 

 

Computation of wavelength shift – we have 

 

  = H = RH  ;  = D = RD  

 

   =  =  

 

 ⟹       =    



15 

 

  (  MD  2MH; m  MH ;  so, m/MH  1) 

 

  H  D=  H =   (  m/ = 1/1836) 

 

For -line, H = 4681 A and so  (4681/3672) A = 1.28 A, the 

wavelength difference of -lines for hydrogen and deuterium. 

 

Hydrogenic atoms  

 

Bohr’s theory for H-atom can be used for any atom with a single electron such 

as singly ionized helium atom He+, doubly ionised lithium, Li++ etc.  These 

hydrogen –like atoms are called hydrogenic atoms. 

 

 Plainly, in hydrogenic atoms, the nucleus is of charge Ze, where Z is 

the atomic number.  So, in hydrogenic atoms Ze2 should be in place of e2 in H-

atom.  With the change, the expressions for the energy and the radius of 

hydrogen like atoms become  

 

  En =   = 13.6  eV 

 

rn = n2a0/Z 

  

 This shows that the orbits of atoms with higher Z-value are closer to 

the nucleus. 

 

 

 

1.3 Excitation of atoms – (Critical Potential, Excitation 

Potential, Ionisation Potential) 

 

As already stated, an atom is in its normal or ground state when it is in the 

lowest allowed state with n = 1.  For emission of radiation, it must first transit 

to a state of higher energy.  If in the process, it losses one or more electrons, it 
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is ionised.   If however it is raised to a higher energy state without ionization, 

it is said to be in an excited state. 

 The energy required to cause excitation may be supplied in a variety 

of ways and electron bombardment is the most convenient one.  Electrons 

emitted from a hot filament (thermion) are imparted kinetic enegy T = Ve by 

accelerating them across a potential V.  Let Em, En, …  be the sequence of 

possible energy states of the atom where  = energy in the ground state, En = 

energy of the first excited state etc., 

 

1. If T  (En – Em), the energy of bombarding electron is not 

sufficient to cause excitation.  The elastic collision charges the 

kinetic energy of the atom as a whole without any change in the 

internal energy. 

 

2. If T = (En – Em), the energy is just sufficient to excite the atom to 

the next higher state by energy transfer to one of the bound 

electrons.  The collision is inelastic,  the bombarding electron is 

left with zero kinetic energy and subsequently undergoes random 

thermal motion. 

 

3. If T = (En – Em) = dT, where s  m, the atom is excited to the 

higher state s as in 2 above, the excess kinetic energy dT  being 

carried away by the free electron. 

 

4. If T ( – ), the eleastic collision ionises the atom; a bound 

electron is freed and the excess kinetic energy, if any, is shared 

with the bombarding electron. 

 

In this context, it is worthwhile to define the following important  

quantities. 

 

 Resonanace potential – A mihimum potential V is required to 

accelerate the bombarding electron to an energy Ve (in electron volt) in order 

that an atom may be excited from its ground state to the next higher state.  This 

potential is called the resonance potential. 
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 Excitation potentials – The various values of the potential required to 

impart the necessary energy to excite an atom to different higher states are 

known as excitation potentials. 

 

 Ionistion potential – The minimum potential necessary to supply the 

required energy to ionise an atom is called the ionization potential or the first 

ionization potential. 

 

 The resonance potential, the excitation potentials and the ionization 

potential are all included in the wider term eritical potentials. 

Illustration – We illustrate the above definitions by taking H-atom. 

 

    =    eV 

 

So, the energy of the 1st, 2nd , 3rd , …. th orbits are respectively – 13.6 eV, -

3.4eV, - 1.51 eV, …, 0 eV. 

 

 Resonance potential                =  13.6 – 3.4                  = 10.2 eV 

          First excitation potential      =  resonance potential = 10.2 eV  

          Second excitation potential  = 13.6 – 15.1    =12.09eV 

          Ionization potential               = 13.6 – 0   =13.6eV  

 

 

1.4 Measurements of critical potentials - Frank-Hertz    

       experiment 

 

 Frank-Hertz experiment – The existence of discrete energy levels was 

confirmed by Franck and Hertz by conducting a series of experiments which 

we shall new describe. 
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Fig. 4.10 

 

 Apparatus – It consists of a glass tube T (Fig.4.10) having a filament 

F, a wire grid G and a collecting plate P sealed into it.  The atoms under study 

are taken into the tube in vapour-form (Franck and Hertz took Hg-vapour), at a 

low pressure.  Electrons emitted from the filament F, when heated, are 

accelerated towards the grid G, kept at a positive potential V with respect of F.  

The idea is to bombard vapour atoms by these electrons of know energy eV.  

The collector P is kep at a slightly negative potential with respect to G.  This 

small retarding potential Vo (  V), allows only those electrons with energies 

greater than eV0 to reach P to contribute to plate current recorded by 

milliameter A. 

 Method and observation – As V is increased gradually to resonanace 

potential Vr, more and more electrons reach the plate P and plate current i 

increases.  Collisions of electrons with varpour-atoms are eleastic; energy 

transfer is negligible since atoms are much heavier than electrons.  But whn V 

= Vr, the plate current sharply drops because electrons can now collide 

inelastically with vapour atoms; lose all the kinetic energy and cannot 

overcome V0  to reach the collector P.  A  residual current is due to the elastic 

collisions of some electrons. 

As V is increased further, the plate current rises again due to on-coming 

electrons gaining enough energy again to reach P overcoming V0.  This goes 

on till another abrupt drop in plate current occurs at V = 2Vr, and so on.  A 

series of such potentials.  Vr, 2Vr, 3Vr etc. for a given atomic species is 

obtained.  The different peaks are at potentials which are integral multiples of 

resonance potential.  The difference in potentials between two consecutive 

peaks thus gives the resonance potential. 

 

• The alternate rise and fall of current is explained thus.  When 

p.d. between F and G is 2Vr, the electrons from F gain 

energy equal to the energy difference between two levels 

when half-way from F  G.  If inelastic collision occurs at 

this point, the entire energy is lost.  They start afresh with 

zero kinetic energy towards G and inelastic collision again 

would lead to a peak.  Similarly for other peaks due to 

collision at different points in their path. 
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The importance of Franck and Hertz experiments is that provide a direct and 

independent evidence for the existence of atomic energy levels (quantization) 

and also confirm that these levels are the same as those suggested by the 

observations of the line spectra. 

 

 Ionization potential: A simplified apparatus for the determination of 

the ionization potential is described here. 

 

.  

  

 It consists essentially of a sealed tube T  containing a filament-heated 

cathode C, a plate P as anode and the experimental gas or vopour at a low 

pressure.  As the plate voltage V is gradually increased from zero to some 

positive value, the plate current  i  increase according to the Child-Langmuir 

law: 

 

i = kV3/2 

where k is a constant  

 

 The  constant  k  is determined by the tube-geometry and  the  volume 

density of charge between the electrodes.    

 

 As V is increased,  it is observed  that at a certain V = Vi , the current  

suddenly  begins to increase  more rapidly.  At this critical value Vi  some  

electrons bump from the cathode to anode and acquire sufficient energy to 

knock off electrons from the gas atoms.  The knocked off  electrons contribute 

to the plate current  and the positive ions annul some of the space charge.  Due 

to this ionization the plate current shows a marked increase, as observed.  The 

potential at which this occurs is the ionization potential.  It is found to be 13.6 

eV for hydrogen. 
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  The thermions emitted from the filament have a certain initial velocity 

distribution and some of them can ionise the gas at relatively lower potentials 

than others.  This fact explains the curved section joining the two lines in the 

graph (Fig.4.12.) 

 

Merits and limitations of Bohr’s theory 

 

The merits of Bohr’s theory can hardly be overestimated.  It saved physics at a 

time when it was in the grip of severe crisis.  But it has also its limitations. 

 

 Merits-It gives a convincing explanation and a simple and elegant 

picture of the origin of spectral lines.  The theory predicted new undiscovered 

spectral series lines which were later observed. 

 

 The empirically determined value of Rydberg constant was evaluated 

by Bohr in terms of fundamental constants and the agreement was excellent. 

  

 The theory has been instrumental to the discovery of heavy hydrogen 

(deuterium) by Urey, and the general prin ciple  used by Bohr has been 

successfully applied to many phenomena such as excitation, ionization, X-ray 

spectra etc. 

 

 Limitations – There is an ad hoc nature in the assumptions of Bohr.  

The quantum idea of stationary orbits is mixed up with the classical idea of 

Coulomb force.  The assumption of only circular orbits is also unjustified. 

 

 The spectral series, though agree excellently with H-atom, are at 

variance with the theory of multi-electron atomic systems.  In these cases, it 

becomes necessary to introduce a magnetic quantum number. 

 Bohr’s theory can neither account for the origin of fine structure nor 

the multiplet structure of spectral lines like the doublet of sodium, triplets of 

magnesium etc. 

 

 The theory cannot also make calculations about the tranitions or the 

selection rules which apply to them. 
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 In fact, the difficulty was with the atomic model itself.  Even 

extension of Bohr’s theory by Sommerfeld by introducing elliptic orbits could 

not save the situation except explaining the fine structure.  The intensities or 

the polarization of lines remained unresolved.  Every one was convinced that a 

more radical theory can only save the situation. 

 

Learning activity - Illustrated Examples 

 

Example 1.  Show that the energy required to raise H-atom from the grond 

state (n – 1) to the first excited state (n = 2) is about 10 eV. 

 

Solution.  Let  E1 and E2 be the energies of the electron in states n = 1 and n = 

2 respectively. 

   

                 ;   

  Required energy, E = E1 - E2  =   

 

 E =  J ≃ 10 eV  

 

Example 2. Given the Rydberg constant as 1.097 x 107 m-1, calculate the 

wavelength of the first line of Balmer series in Angstrom unit. 

 

Solution For the first line, i.e., -line of the Balmer seres, ni = 3, nf  = 2 

 

 Wave number of - line :  =   =   

 

 Wavelength of  –line : ⅄ =  =  =  m = 6563 A 

 

Example 3. Calculate what will be the approximate quantum number n for an 

electron in an orbit of radius 0.1 nm. 

 

Solution.  The radius of Bohr orbit, in terms of Bohr radius , is given by 
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     =  = 0.53n2 A 

 

for rn = 0.1 nm = 106 A, we therefore obtain from above 

  

 106 = 0.53R
2 ⟹ n2 = 106 /0.53 = 18.87 105 

 

    n ≃ 1374 

 

Example 4.  What is the velocity of electron in the ground state of H-atom is 

terms of the speed of light? What is this called? 

 

Solution.  From the relation :  vn  =  , we have 

 

     v1 =  (n = 1) 

 

In terms of the speed of light, the electron velocity is 

 

  =   ≃  

 

This is called the fine structure constant. 

 

Example 5. Find the series limit of Balmer series, given RH = 1.097  

  

Solution.  The wavelengths of spectral lines of the Balmer series are 

  

   =   ; n = 3, 4, 5, … 

 

For the series limit, n = .  We thus obtain from above 

 

  =   =  

 

 ⅄  =  =   = 3.646  m 
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 = 3646 A 

 

Example 6.  The first line of Balmer series of hydrogen has a  wavelength 

6563 A.  Calculate the wavelength of the second line. 

Solution.  The wavelengths of the spectral lines Balmer series given by 

 

   =   ; n = 3, 4, 5, 

 

 For the first line, n = 3; so the wavelength ⅄1 is given by 

  

   =   =       

 

 For the second line, n = 4,  So, the wavelength ⅄2 is given by 

 

   =   =  

  

    =  

 

    =  =  

 

 = 4861 A 

 

Example 7.  The average life-time of an electron in an excited state of H-atom 

is about 10-8
8.  How many revolutions does an electron in n = 2 state make 

before its transition to n = 1 state.  The Rydberg constant for H-atom is 1.097 

  m-1 

 

Solution.  The frequency of revolution of the electron in an orbit is 

 

  f  =  =  
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  But,   =  and  =  

 

   f  =   =    RHc 

 

For, n = 2,  f  =  =  = 8.2   

 

  No. of revolutions in  is given by  

 

 N =  = 8.2      = 8.2   

 

Example 8.  If the wavelength (mean) of sodium D-lines is 5893 A, estimate 

the minimum energy in electron volt of the bombarding electron for excitation 

of these lines. 

 

Solution.  Wavelength of D-lines : ⅄ = 5893  

                 Frequency of  D-lines : v = c/⅄ = 3   /(5893 )Hz 

 

  Energy of excitation of the D-lines is  

 

 hv =   J 

 

      =     eV = 2 Ev 

 

Example 9.   Calculate the tonization potentials of (i) H-atom and (ii) He-atom 

in the ground state. 

 

Solution. (i) We have,  =  For ground state, n = 1. 

   =  =  J 

  = 13.6 eV 
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  Energy of the first orbit of H-atom = - 13.6 Ev 

  Ionization potential of H-atom in ground state = 13.6 Ev 

 

(ii) We have for hydrogen-like atom, En =    

       For He-atom, Z = 2 and for ground state n = 1 

  

   (E1) He =   4 = + 4 ( )H 

  (E1) He =  + 4 (-13.6) = - 54.4 Ev 

 

       Ionization potential of He-atom in the ground state = 54.4 Ev.  

Example 10.  Find the wavelength separation of the first member of the 

Balmer series due to 1H and 2H (= 2D). 

 

Solution.  We have : H = RH  . . . for 1H 

 

 and  0 = RD  . . .  for 2H (-2D) 

     =    =   =  

  

 or,  =  =  

 

    =  =  

 

             At ⅄ = 656.3 nm,  = ⅄/3680 = 656.3/3680 = 0.178 nm. 

 

Example 11. Show that the magnitude of the potential energy of an electron in 

the n th orbit of H-atom is half the magnitude of its kinetic energy in that orbit. 

 

Solution.  Potential energy of electron in nth orbit of H-atom is given by 
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  V =   =   (  = ) 

 

             =  J 

 

             =  J =  eV 

           Kinetic energy, T =  eV     eV 

 

Which is half of the potential energy in magnitude.   

 

Example 12.  A positronium atom is a system that consists of a positron and 

an electron.  Calculate the reduced mass, the Rydberg constant and the 

wavelength of the first Balmer line for positronium.  Given, m = 9.1   

kg,  = 1.09737   A-1 and = 6563 A. 

 

Solution.  The positron has the same mass m as that of the electron and has 

equal but positive charge. 

 

 Reduced mass of positronium is  

 

 p =  =  m =  9.1   kg 

       

= 4.55  kg 

 

Rydberg constant (= constant / ) for positronium is thus half that 

for hydrogen. 

 

   =   =   1.09737  10-3 A-1 

  

 = 0.54868  10-3 A-1 

 

Wavelength of the first Balmer line, in H-atom is given by 
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  = RH  

 

While that in positronium is given by 

 

  = RH  

 

  =  = 2 

                             ⅄p = 2 H = 2  6563 A = 13126 A 

  

Example 13.  Show that the transitions from n = 3  n = 2, n = 2  n and n = 

3  n = 1 in Bohr atom model satisfy the following relation 

 

  

 

Solution.  We have :  =  R c  ; v2  1 R c  ; 

   

   =  R c  ; 

From the first two equations, we obtain 

 

 = R c    

 

 =  R c    

 

    

 

Example 14.  An electron circles a nucleus of charge Ze.  Of the two orbits 1 

and 2 of radii r1  and r2 respectively, it total energy is greater while in orbit 2 

are greater than those in orbit 1. 

 

Solution.  Energy of electron, 
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   E n  =  =          (4.16.1) 

 

 Since E1  E2, we have : (E1 - E2) 0 

 

 or,   0, using (4.16.1) 

 

 or,     0 

   

    r1  r2 

 

From (i) again,  m =   

 

 or,  0 using (4.16.2) above. 

 

    v2  V1 

The acceleration of electron in circular orbit is the normal acceleration, 

.   

 Since,     

  

   f n =   

 

      

  

  Or,   0 (∵r1  r2 ) 
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Example 15.  Show that in a Bohr atom if the electron is considered as a wave 

travelling along the circular path, then the nth orbit will contain n complete de 

Broglie waves. 

 

Solution.  The radius rn  of the nth Bohr’s circular orbit is given by  

 

 rn =   

 

       So, the circumference of the nth Bohr orbit is 

 

 2  =   

 

But the wavelength of the de Broglie wave (see later) is given by 

              

                         ⅄=   ;  

 

 Number of complete de Broglie waves in nth orbit is 

 

    = n 

When we consider the differences between the spoken and written mediums, 

we find that most of them can be traced to two main sources situational and 

the very nature of the two mediums. 

 

1.5 Sommerfeld’s model 

 

According to Bohr’s theory, each spectral line of H-atom must be a single line, 

i.e., a single frequency.  But Michelson and others observed each line to be 

considered of a small number of close components of slightly different 

frequencies.  This is known as the fine structure of spectral lines, implying 

each energy level of a given n must be split into sub-levels of slightly different 

energies.  But the phenomenon could not be explained on the basis of Bohr’s 

theory. 
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 To explain the fine structure, Sommerfeld extended Bohr’s theory by 

introducing (i) general quantization rule and (ii) the idea of elliptic orbits for 

the electron. 

 

 The general quantization rule for any physical system proposed by 

Wilson and Sommerfeld runs as:   For any physical system in which the 

coordinates are periodic functions of time, there exists a quantum condition for 

each coordinate given by 

 

 

 

Where q is one of the coordinates, pq the corresponding momentum, nq, a 

quantum number that takes integral values. 

 

 Elliptical orbits – According to Sommerfeld, the electron in the H-

atom moves in an elliptical orbit around the nucleus as one focus (Fig.4.7). 

 The electron can now be located by two coordinates r and , the radial 

distance and the azimthal angle.  Based on the general quantization rule, we 

now have two quantum condition – one for the radial momentum pr = m(dr/dt) 

and the other for the angular momentum, po = mr2 (d  / dt). 

 

 

Fig.8 

  

     

 

                                   nr = 0,1,2, …., 

      

                                      k = 1, 2, 3, …, 
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Where nr is the radial quantum number and k, the azimuthal quantum number 

and the integration is over one complete period of motion.  Since k = 0 

corresponds to the motion of electron along a straight line through the nucleus, 

and has therefore been left out. 

 

 A complete analysis, which we shall not enter into, gives 

 

    N = k + nr,  n = 1,2,3, … 

   

    and En  = -    

 

where n is known as the total quantum number or principal quantum number.  

Also, from the analysis, 

  

      , 

 

Where a and b are the sem-major and semi-major and semi-minor axis of the 

ellipse. 

  

 So, only those orbit are permitted for the electron for which the ratio 

of the major to minor axis is the ratio of two integers. 

 

 

 

Fig 9 

The energy expression (4.9.4) is identical to the one for circular orbits so that 

the mere introduction of elliptic orbits adds no new energy levels and hence 

does not explain the fine structure.  Fig 4.8 illustrates the possible electron 

orbits in H-atom for n=1,2 and 3.  The orbit is circular for n = 1, k = 1, nr  = 0.  
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The two orbits corresponding to n = 2 have the same energy and are said to be 

degenerate.  The energy state n = 3 is three-fold degenerate. 

 

 Relativistic effects – Sommerfeld next considered the relativistic 

effects to remove the degeneracy (or the existence of multiple orbits of same 

energy) and explain the fine structure. 

 

 The speed of the electron in elliptic orbit changes with its position, 

speeding up when closer to the nucleus and slowing down when far away from 

it.  Due to this variation in electron speed, there would be a variation in the 

mass of the electron according to the relativistic relation 

 

  m =  

  

 As a result of this mass-variation with velocity there is a slow 

precession of the major axis in the elliptic plane about an axis through one of 

the foci.  The electron’s path of motion in such a case, is a rosette as has been 

illustrated in Fig. .9.   The precession rate however is different for different 

elliptical orbits. 

 

 Taken relativistic effects into consideration, the energy of hydrogen-

like atom is given by 

 

  = -   

 

Where  is the reduced mass and  is the fine structure constant defined by 

   =  

 

A dimensionless universal constant. 

 

 For a given principal quantum number n, k can have n different values 

leading to different states with slightly different energies.  So, we shall have a 

number of transitions in place of a single one of Bohr’s theory.  The lines thus 
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generated are the fine structure.  But all possible transitions are not allowed.  

Only those for which k changes by unity are allowed i.e., 

 

 

 

Which is the selection rule for an allowed transition.  There is however no 

restriction on the change in n, i.e., n-value. 

 

• Discrepancies however still remained.  For instance, 

calculations show that the first line of Balmer series should 

have six-components, but in fact it has five.  Selection rules 

reduced   -lines to three. 

• Sommerfeld’s theory included no consideration of electron 

spin, nor the exclusion principle of Pauli which are basic for 

an understanding of the complex atom.  It is at present of 

historical interest only we have therefore not gone deep into it. 

• A complete explanation of the fine structure of spectral lines 

can be provided only by the introduction of the concept of 

electron spin and quantum electrondynamics.  In fact, the 

limitations of old quantum theory were overcome by quantum 

mechanics developed by Heisenberg, Schrodinger and 

extended by Dirac. 

 

Bohr’s correspondence principle 

 

Bohr noted from the energy expression that as the quantum n becomes very 

large, the successive values of the allowed energy differ very little from each 

other, and appear almost continuous.  Further, as the spectral lines tend to the 

series limit they crowd so much  that the spectrum appears continuous.  In this 

context,  Bohr in 1923 enunciatted an important principle called the 

correspondence principle. 

 

 Statement-It states that the behaviour of an atomic system as predicted 

by quantum theory tends asymptotically (i.e., corresponds) to that expected in 

classical theory in transitions involving states of large quantum numbers. 
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 Bohr’s correspondence principle forms an important guideline in 

formulating the laws of atomic mechanics. 

 

 Let us apply this to the Bohr atom.  Classically, an electric charge 

moving in a circular orbit radiates energy at a frequency equal to the frequency 

of rotation.  The frequency of rotation, 

 

   v=  =  

 

Substituting the values of v and r from (4.5.5) and (4.5.7) and simplifying, 

   vn =    

 

 A radiated frequency in quantum theory, when the electron transits 

from state n to (n – 1) is, however 

 

 vn =   =  

 

when n is very large, (2n – 1)  2n  and (n – 1) ≃ n. 

 

   vn =  

Which is identical with the classical frequency. 

 

• The basic philosophy of the correspondence principle is that the Bohr 

model when applied to problems of the macroworld would give results 

identical to those obtained by the classical methods.  Its applications 

however go beyond the Bohr atom.  It implies that two theories must 

correspond whenever their regions of validity overlap. 

• Bohr’s quantum theory gives only the frequency of spectral line and 

states nothing about the state of polarisation, intensity etc. Bohr used 

the correspondence principle and utilized the classical theory for the 

purpose.  He also deduced the selection rules in electron transitions 

with its help. 
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1.6 Vector atom model 

 

The space quantization and the introduction of the concept of spin led to the 

vector model of the atom.  First, we shall discuss the method how the two 

momenta combine and how that brings about changes in spectral 

characteristics of a one-electron atom.   

              The orbital angular momentum  and the spin angular momentum  

of the electron in an atom combine to give a total angular momentum, .  

According to the vector model  is the vector sum of  and . 

 

          The magnitude of , like those of  and , is given by 

  

Where j is the total angular momentum quantum number. 

           We may write, in analogy with the components Lz and Ss, the possible Jz 

values: 

  Jz = mjh 

      Where mj can take up (2j + 1) values from – j to + j in steps of unity. 

                             i.e., -j, -j + 1, ..., j – 1, j  

       In adding  to , they can be added either parallel or anti parallel as 

shown in Fib.10. 

       The total angular momentum quantum number for single electron can 

have values. 

                                                j = 1 + s; j = l – s 

                                           j = l +  ; j = 1 -   (  ) 

       In case l = 0, j can have only the value  .  If l – 1, j = l  i.e.,  or  

If l = 2, j = 2  i.e., 5/2 or 3/2. 

       Since both  and  show quantization, J will also expectedly show space 

quantization.  The internal magnetic field causes the   and the  to process 

about  (Fig.8.6a).  In an external field e, however,  will precess about e  as 
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shown in  Fig.10b.  The precession of    and  about the precessing   is 

rather very complicated.  

 

 

Fig. 10 

Notiation – The notation used to describe the different atomic states is 

 nLj 

where n is the principal quantum number, j the total angular momentum 

quantum number and L refers to be orbital angular momentum quantum 

number. 

 

Different L-values are represented by different symbols denoting the energy 

states. 

 L = 0 1 2 3 4 5 . . . 

                                Symbol : S P D F G H . . .  

Let us use the notation for representing the ground state of the H-atom.  

Plainly  

    n = 1, l = n – 1 = 0, s =   and  j = l  =  

So, according to the notion, the state is given by 1S1/2 

Similarly, for the first excited state, 

                     n = 2, i = 0, s =  , j =   2S1/2  

                     n = 2, l = 1, s =  , j =  ,  ⟹  2P3/2 and 2P1/2 etc. 

All states except the S-state are doublet for n = 2. 

Angles between  and  – We have:  =  +  

⟹ J2 = (  + ) (  + ) = L2 + S2 + 2 .  

          =  L2 + S2 + 2LS cos     



37 

  =   

Where  is the angle between the two vector  and . 

           Now, since we have  = j (j + 1) h2, L2 = l(l + 1)h2 and S2 = s(s+1)h2 , 

                                    cos  =   

Angle between  and the z-axis – Let  be the angle between  and the z-axis. 

 cos  =  =  =  

              We have seen that the maximum value of  is j which is less than 

.  It thus follows that J  can never align itself along the z-axis.  

 

Spin-orbit interaction or splitting : Fine structure 

The emission lines of H-spectrum show, as already stated, a doublet structure.  

But why?  The reason behind this would now be investigated. 

         The electron in H-atom moves under a central potential V (r) due to the 

nucleus.   The interaction between its orbital angular momentum  and spin 

angular momentum  is known as the spin-orbit interaction or splitting.  

The interaction is of the form ,  and it makes the states j = l -  to have a 

slightly lower energy than those with j = l - .   And this doublet levels 

constitute the fine structure of the H-atom spectrum. 

              For s-electrons, the orbital angular momentum is zero.  So, spin-orbit 

interaction, does not occur. 

             The doublet separation decreases with increasing l.  Further, the 2p 

doublet separation is greater than 3p doublet and so on.  The energy levels of 

H-atom showing the splitting due to spin-orbit interaction is illustrated in Fig..  

If spin-orbit interaction is 1s  2p is a single line – the first line in the Lyman 

series of H-spectrum.  It splits into two lines when the spin-orbit interaction is 

considered (Fig.8.7)   The same is the story regarding the transitions 1s  3p, 

1s   4 p and so on.  Each line of the Lyman series, therefore, is a doublet and 

is often known as fine structure doublet.  Fig.8.8 illustrates the transitions 
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between 2p  3d levels which give rise to three lines – the triplet.  Spin-orbit 

coupling increases the complexity of H-spectrum. 

            The spin-orbit interaction-appears more prominent in case of heavy 

elements.  This is because the spin-orbit energy is directly proportional to the 

fourth power of atomic number Z. 

 

 

1.7 L-S and J J coupling 

Total angular momentum in multi-electron atoms 

Compared to an one-electron atom, the addition of orbital and spin angular 

moments makes the multi-electron atoms much more complicated and 

involved.  In the later case, the active electrons that contribute to the angular 

momentum of the atom are those outside a closed shell-the valence electrons.  

There are two coupling schemes for computing the total angular momentum  

of a multi-electron system.  The schemes are : (i) LS coupling or Russel 

Saunders coupling and (ii) the jj-coupling. 

LS-coupling 

In the LS-coupling, the orbital angular moments  … etc. of the 

electrons are vectorially added to produce the total orbital angular momentum  

.  In a like manner, the spin angular moments  S1, S2, S3 … combine 

vectorially to form the total spin angular momentum, ,  Symbolically, 

therefore, 

                                    . . . =  

                             and    

               Finally, the resultant momenta  and  combine vectorially to form 

the total angular momentum  , so that we have  

  =   

               This coupling scheme is valid only when the coupling between the 

individual   vectors and  vectors, i.e., between   and    etc. is weak.  

Then the individual  ’s would couple to give  and the individual  ’s will 

combine to give .  It applies to a large number of elements, particularly the 
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lighter ones.   Due to its wide validity, this coupling scheme is the basis of the 

usual spectroscopic notation. 

               ● Conventionally, capital letters L, S and J are used for the angular 

momentum quantum numbers of a multi-electron system and they are simply 

integers and half-integers.  In expressing the magnitude of angular momentum 

vectors multiplication by h is to be made so that no confusion arises. 

Now, if two orbital angular momenta of quantum numbers  and      

combine to form L, the allowed values of L are  

 

                   L = ( ), ( ), …  

 

The allowed values of S and J can also be similarly calculated. 

 

For a given L, the allowed J-values are similarly 

 

                   J = (L + S), (L + S – 1), …  

  

             For L  S, there are 2S + 1 values for J; for L  S, the possible J-

valuesare 2L + 1.  The value of 2S + 1 is known as the multiplicity of the 

state. 

             The simplest multi-electron system is a two-electron system for which 

the spin quantum number (S1 = ½, S2 = ½) may be so set that they are both 

parallel and S =  +  = 1; they could as well be oriented anti-parallel so that S 

=  =  +  = 0.   When S = 0, 2S + 1 = multiplicity = 1.  Such states are called 

the singlet states.  When,  however, S = 1, 2S + 1 = 3.  These are known as the 

triplet states. 

             For an one-electron system our notation was nLj.  It now requires a 

change for representing the state symbol incorporating the multiplicity of the 

state.  The state symbol is thus represented by  

 N2S+1LJ 

Where          n          stands for the principal quantum number, 

                2S + 1      represents the multiplicity of the state, 

                      J           the subscript,  represents the total angular 

                                 momentum quantum number and 
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          L         Stands for S,P,D, … etc. representing the oribital 

          Angular momentum quantum number. 

 

This notation for describing the states is called the term symbol of the state. 

If S =  , L = 1, J =  ,  ;the states will plainly be 2P3/2, 2P1/2 doublets.  

For S = 1, L = 1, J = 2, 1,0; the states will be 3P2,  
3P1, 

3P0  - triplet states.   

           The selection rules for LS-coupling scheme are: 

  L =  1,  S = 0 

                                J = 0,  1 (J = 0  J = 0 forbidden) 

            The selection rules S = 0 forbids the transition between the singlet 

and the triplet states. 

 

 

 

j j – coupling  

When the interaction between each   and   is strong, this type of coupling 

develop where the individual  ’s combine with the corresponding  ’s to 

form a , the total angular momentum of the ith  electron.  Then these ’s 

couple to form , the total angular momentum of the atom.  This coupling  

scheme is called jj-coupling which is, distinctly different from the LS-

coupling.  Symbolically, therefore,  

                =   +  =   + ; … 

                and  =  +  + … =  

              This type of coupling is applicable to heavy elements. 

          ● Pure jj-coupling is rather rare.  Many heavy elements have spectra 

requiring for their interpretation a coupling which is intermediate between the 

LS and jj. 

Hund’s rules 

When the angular moments of a number of electrons combine, a number of 

possible L-values and S-values are obtained.  There are two rules, known on 

Hund’s rules, that govern which one of these values has the lowest energy, and 

the order in which the increase in energy occurs. 
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         Rule 1.  The total spin angular momentum  should be maximized 

according to Pauli’s principle.  Then 

 S = Ms,max 

          Rule 2.  For the said S-values, L should be maximized according to 

Pauli’s principle.  Then 

 L = ML, max 

            When the spin-orbit interaction splits the energy level corresponding to 

different J values the will be the lowest in energy. 

 

 

1.8   Pauli’s  exclusion principle:    

 

          In the previous chapter, we studied quantum mechanically some simple 

systems by solving Schrodinger equation.   But for a multi-electron system, the 

Schrodinger equation is not exactly solvable and no general expression for the 

energy levels can be obtained.   The atomic spectra of the multi-electron atoms 

therefore are not as straightforward as those of one-electron system.  

Fortunately, a number of experimental results can be explained even without 

taking recourse to wave functions.  We shall discuss here under the 

arrangement of electrons-electronic configuration-in multi-electron systems. 

              Shells and Sub-shells – As has been seen already, the quantum, state 

of an electron is completely specified by the set of four quantum numbers n, l, 

ml and ms.  An equally valid set of quantum numbers gives n, l, j and mj.   In 

any atom, the electrons having the same quantum number n are said to be in 

the same shell is codified as follows.     

             n = 1, K-shell; n = 2, L-shell; n = 3, M – shell; n = 4, N-shell etc. 

           Again, for a given n, the electrons having the same l-value are said to be 

in the same sub-shell.   Sub-shells are codified by nl values : 1s, 2s, 2p, 3s, 3p, 

3d etc. 

           In any shell, as already shown, there could be n2-different quantum 

states since, for a given l, the quantum number ml can take up (2l + 1) values. 

          Now, the question that arises is:  how are the different electrons 

distributed among the shells and sub-shells? Could they be distributed in any 

manner we please or is there any restriction in regard to their occupancy of 

shells and sub-shells? 
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          Pauli’s exclusion principle – Pauli in 1925 enunciated his famous 

exclusion principle as a basic rule that determines how the electrons in multi-

electron systems occupy the orbitals. 

          Statement- In any atom, no two electrons can have same set of quantum 

numbers (n, l, mi, ms) or (n, l, j, mj). 

         If two electrons have all the quantum numbers the same, one of them is 

excluded in the formation of the atom.  Hence the name exclusion principle.  

So, if two electrons in an atom have the same values for n, l and mi, the fourth 

quantum number ms = -1 for two electrons in an atom, then ms  = +   for one 

and   ms  =    for the other.  Both of them cannot have ms  = +   or ms  =  

 . 

         The principle also enunciates the indistinguishability or the equivalence 

of electrons.  Hence sometimes it is also known as the equivalence principle.   

It applies to normal as well as excited states of the atom and has been 

extremely useful in explaining the atomic and spectral phenomena, particularly 

the periodicity of elements in the periodic table.  In fact, it is one of the basic 

pillars of atomic physics and quantum mechanics. 

            Electronic configuration – A nucleus has a positive charge of Z units.  

Outside the nucleus,  Z electrons are arranged so that the atom as a whole is 

neutral.  Now,  a system of particles is stable when its total energy is a 

minimum .  So, the various electrons in a complex atom should occupy the 

lowest quantum state.   But this is prevented by Pauli’s principle which guides 

the arrangement of extra-nuclear electrons.   We shall examine how these two 

basic rules: (i) the principle of minimum energy and (ii) the Pauli’s principle 

determine the electron configuration. 

            Electrons of the same shell are, on the average, at roughly the same 

distance from the nucleus and so interact virtually with the same electric field 

and have similar energies.  The energy of an electron in a particular shell 

depends to some extent on l-value, i.e., on the sub-shell, although the 

dependence is not so great as on n-value.  The electrons in each shell increase, 

in general, in energy with increasing l.  In a sub shell, however, the electrons 

have almost identical energies, since the dependence of electron – energy on 

ml  and ms is minor. 
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Number of permitted electrons in a sub-shell and shell 

            For a given n, the quantum number l can have the following values: 

 l = 0,1,2,3, … (n – 1) 

         For a given l, again, the quantum number ml  can take up the  values:      

 ml = 0, 1, 2 , 3, …   

that is, (2l + 1) different values.  Hence the maximum number of electrons 

permitted in a sub-shell is 2(2l + 1), since ms can have only two values: ms =   

and  . 

         The maximum number of electrons in a shell is therefore 

 N (n) =  

 = 2(1 +3+5+… + 2  ) =  

      On this basis, the various sub-shells can have the following maximum 

number of electrons. 

                 __________________________________ 

                     Sub-shell           l             Maximum electrons 

                                                                  2(2l + 1) 

               ___________________________________       

                 s                   0                        2 

                         p                   1                        6 

                         d                   2                      10     

                         f                    3                      14 

                                                                           

                _____________________________________________             

 

       Thus, an s-sub-shell can have, at best, 2 electrons; a p-sub-shell 6 

electrons; a d-sub-shell 10 electrons and so on.  

          Let us now see the possible number of electrons and their distribution in 

a shell. 

         The innermost K-shell for which n = 1, the L value can only be l = 0; 

also ml = 0 and ms =  .    Thus, in K-shell there can only be 2-eletrons; since 

l = 0 for both, they are s-electrons in conformity with the results of table. 

          The next is L-shell for which n = 2; since n = 2, the possible l-values are 

l = 0, 1.  For l = 0, there will be two s-electrons and for i = l, there will be six 
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p-electrons, according to table.   The set of quantum numbers that correspond 

to the above 8 electrons in shown in the table below. 

                 _______________________________ 

            n             l          ml        ms          Type 

                  ___________________________________ 

                       2            0          0                s-electrons 

                  ___________________________________ 

1       

 

                       2            1           0                p-electons 

 

                                                 1                       

                ________________________________  

                 The third shell is M-shell for which n = 3; since n = 3, the L-values 

are l = 0,1 and 2.  For l = 0, there are two s-electrons and for l = 1, there are six 

p-electrons, as mentioned earlier.  When however l = 2, ml =  2, 1, 0, +1, +2 

and for each of the five values of ml , ms =    and there are thus ten 

electrons.  These are all d-electrons, since they have l = 2.   The following 

table gives the set of quantum numbers of the these ten electrons. 

 

                  _____________________________________________             

                      n               l              ml                 ms                Type   

                       ______________________________________________________________   

                                                       2                               

1     

                      3                2                 0                           d-electrons 

                                                        1                    

                                                        2                   

                 _____________________________________________ 

            There can, therefore, be at best 18 (= 2 + 6 + 10) electrons in the M-

shell of the atom.  And so on. 
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           The occupancy of different sub-shells is expressed by the following 

notion: the n-value followed by the symbol standing for l-value.  The number 

of electrons in the sub-shell is indicated by a superscript after the symbol.  For 

instance, the configuration of sodium is 1s22s22p63s1.   The configurations of 

some common elements are given in Table 8.1 in the next page. 

_________________________________________________ 

 

    Element             Configuration            Element           Configuration 

_________________________________________________ 

H                         1s1                             Zn                [Ar] 4s23d10 

He                        1s2                                          Ga                 [Ar] 4s23d104p1 

Li                         1s22s1                                   Kr                 [Ar] 4s2 

Be                        1s22s2                                   Rb                 [Kr] 5s1   

B                          1s22s22p1                            Y                  [Kr] 5s14d1  

C                          1s22s22p2                          Mo              [Kr]5s24d5 

N                    1s22s22p3            Ag              [Kr]5s14d10         

O                   1s22s22p4                        Cd              [Kr]5s24d10       

F                    1s22s22p5                   In              [Kr]5s24d105p1 

Ne                  1s22s22p6                   Xe             [Kr]5s24d105p6 

Na                  [Ne]3s1                                 Cs               [Xe]6s1 

A1                  [Ne]3s23p1                        La              [Xe]6s25d1 

Si                   [Ne]3s23p2                       Ce               [Xe]6s25d1 4f 1 

Cl                   [Ne] 3s23p5              Pr               [Xe]6s24f 3          

Ar                  [Ne]3s23p6                     Gd              [Xe] 6s25d1 4f 7 

K                   [Ar]4s1                      Dy              [Xe] 6s24f 10 

Sc                  [Ar]4s23d1                Lu  [Xe]6s15d14f`14 

Cr                  [Ar]4s13d5                Au             [Xe]6s15d104f14 

Mn                [Ar]4s23d5                       Tl               [Xe] 6s15d104f146p1 

Cu                 [Ar]3d104s1        Rn             [Xe] 6s15d104f1466 

_____________________________________________________________________________ 

* Symbol [   ] indicate that the atom has configuration of the previous inert gas 

plus additional electrons given. 

       Transition elements, Lanthanides and Actinides – In potassium (Z=19), 

the 19th electron goes into the 4s-sub-shell rather than in 3d; so does the 20th 

electro of calcium (Z = 20).  The configurations of the next 10 elements, from 

Z = 21 (scandium) to Z = 30 (Zinc) differ only in the number of electrons in 3d 

sub-shell except however Cr (Z = 24) and copper (Z = 29) where there is only 
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one 4s-electron each.  The ten elements from scandium to zinc are known as 

transition elements.  These are metals having similar chemical properties 

determined mainly by the valence electrons, but they hardly show any 

resemblance with elements in the major groups. 

           The lanthanides, comprising 58Ce to 71 Lu, have similar chemical 

properties since all have their outermost 6s2 sub-shell completed while 4f sub-

shell is being filled.  They are called rate earths.  Similar to lanthanides are the 

actinides, comprising  90
Th to 103Lr, where the inner sub-shells are being filed 

while the outermost 7s2 sub-shell is complete. 
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LEARNING ACTIVITY  

1. Discuss in detail about Somerfield model 

2. Explain the Experimental determination of critical 

potential using Frank and Hertz`s method  

3. Derive an expression for LS and JJ coupling 

4. State and verify Pauli’s exclusion principle  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  
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SUMMARY 

In this Unit, we said that various types of  atom models and derive an 

expression for condition for the allowed elliptical orbits using somerfiels 

model and detail study about vector atom models and derivation for LS and JJ 

coupling. We also study about Pauli’s exclusion principle and verification 
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Summary 

OVERVIEW 

In this chapter on `Atomic Physics’, we shall study the spectra H-atom and 

atoms with more than one electron.  While in Bohr’s theory we came Across 

of only one quantum number w required as many as three such numbers in 

quantum mechanical system of one electron atom.  A fourth quantum number, 

the spin quantum number, was soon needed to explain the spectral 

characteristics of atoms.  Starting from hydrogen spectrum and the experiment 

of Stern and Gerlach that established the existence of spin, we shall switch 

over to electronic configurations of multi-electron atoms and the angular 



momentum coupling schemes.  We shall also study the Zeeman splitting  of 

spectral lines in a magnetic field and Stark effect of spectral lines in a electric 

field.  

LEARNING OBJECTIVES 

After completing this Unit, you should be able to: 

• Theory of  the spectra H-atom and atoms with more than one electron;

• Zeeman splitting of spectral lines in a magnetic field and Stark effect

of spectral lines in an electric field.

2.1 Introduction 

Atomic spectra 

Spectral lines emitted by individual atoms consist of a discrete 

set of wavelengths characteristic of the element concerned.    This 

phenomenon has been utilized in the spectroscopic analysis and 

identification of elements.  The spectra of atoms in general, however, 

are very complicated. 

To build up the atom model, therefore, Bohr focussed his 

attention on the simplest element hydrogen.  Its spectrum consists of 

lines that gradually crowd near UV-region and converge towards a short 

wavelength limit.  This is a common feature of all atomic spectra.  The 

position of the limit is only different for different types of atoms. 

In an attempt to systematize the study of spectral line, Balmer 

(1885) showed purely empirically that the reciprocals of the 

wavelengths (not the wavelengths) of the series lines of hydrogen 

satisfy the following relation. 

 = RH   : n = 3, 4, 5, … 



Where RH is known as Rydberg cocstant for hydrogen, having a value 

10967757 m-1.  The lines are successively called , ,  etc.  lines.  

The above series is called the Balmer series. 

Later other spectral series were found to exist and have been 

referred. 

2.2 Spectra of H-atom 

Every state of the hydrogen atom is described by a distinct wave 

function which is specified by the three quantum numbers, n,  and m1.  

The energy level diagram is illustrated in Fig. .The capital letters S,P.D, 

… 

Describe the orbital angular momentum of atomic states, those for 

individual electrons are described by small letter s, p, d, . . .  For a given 

n, the different l states have the same energy, but still we have shown 

them here separately. 

Let us now see the spectral transitions.  The transition of a 

system from one state to another under the influence of electromagnetic 



radiation depends on the interaction of the electronic field of radiation 

with the electric dipole moment of the atom (or molecule). 

 

           The transition from state m to state n is determined by the 

transition dipole moment mn defined by 

  

   mn =   

 

Where ψ’s are the wave functions of the corresponding state of the 

system and  the dipole moment operator.  If mn is finite then that 

transition is allowed, otherwise it is forbidden. 

 

             It can be shown from calculation that for the allowed transition 

the following rules, known as the selection rules, hold good. 

 

  n = any value;  

 

                                  

 

            Transitions in violation of the selection rules are forbidden as 

they are less probable.  Some such allowed transitions are shown in Fig. 

Change in the state of the atom during transition implies that the photon 

must possess energy, linear momentum and angular momentum. For 

instance,  suggests that the photon carries one unit, h, of 

angular momentum. A close scrutiny of the emission spectrum also 

shows that many spectral lines are not singlet, but closely spaced 

doublets. 

 

Orbital magnetic moment of H-atom. 

 

We may roughly consider an atom as an electron of charge –e circulating the 

nucleus with a speed v.  It is equivalent to a circular current loop.  The current  

i in the loop is the ratio of the charge to the period T of circulation. 



  I = -  =  =  

 

         It would give rise to a magnetic dipole moment  given by 

 

  = current  area of the loop 

 

        = i A  =   2, for a circular orbit, 

 

       =   mvr =  L  

 

Where L = mvr, the magnitude of the orbital angular momentum. 

 

     But, the magnetic moment  and the angular momentum  are both vectors.  

So,  

   

 

 

     Since  can have only certain quantized values,  also can have certain 

allowed values only.  The implication of the negative sign is that  and     are 

oppositely directed.   

 

   

 

      

 

     =   

 

 Where    

 

Is called Bohr magneton, the basic unit of atomic magnetic moment and has a 

magnitude 9.27  10-24 J / Tesla obtained by subsitutng the values of e, h and 

m. 

  

 

 



  

        From equation (8.2.3), we have 

 

 z = z =  mih = i 

 

        An important result follows from (8.2.4) and (8.2.5).  Since   

mi, z .  It implies that the magnetic moment  cannot align itself along 

the z-direction.0 

 

 

      Magnetic dipole in a magnetic filed – Let a magnetic dipole of meoment  

be placed in a magnetic field .  Classically, it will experience a potential 

energy V, the energy of interaction between the magnetic moment and the 

magnetic field is given by  

 

  V =  .   

  

               If  is in the z-direction, then using equation 

 

  V = zB Bml  

 

             Now, since ml  is quantized, the potential energy V is also quantized.  

So, in a magnetic field, the atomic state of a given l splits into (2l + 1) different 

states according to the magnetic quantum number, ml. 

  

Larmor precession 

   

If a dipole of magnetic moment l is placed in an external magnetic field , it 

acquires a potential energy V = l .  Classically, it experiences a torque   

  = l .   

 



           The torque’s role is to align the dipole in the field direction.  As l and 

 are oriented antiparallel, would be perpendicular to l,  and .  But we 

have, from machanics, 

 

   = d /dt 

             So, d /dt is also perpendicular to l,  and  implying that d , the 

change in angular momentum, is in the direction of     Since the magnetic of 

 remains the same, its direction most undergo a change to produce the change 

in .  So, the change in angular momentum d  requires the precession of  

about the magnetic field as shown in Fig.8.2.  This is what is known as Larmor 

precession, the frequency of procession is logically termed Larmor frequency,  

 

 Now,   =  =   =  T 

   

                  =    B  =  

 

 

Substituting for L, we obtain 

 

  =  B =   

 

   The cause of precession is this:  With the application of the field, l tends to 

align along  for that corresponds to the minimum energy and this tendency of 



l results in rotational energy which must be dissipated.  But there is no 

available process of energy-dissipation and l in its tendency to align along   

precesses about , keeping  and energy constant. 

 

Stern-Gerlach experiment 

 

A direct demonstration of the existence of space quantization of angular 

momentum of the electron and the electron spin was made by the celebrated 

experiment conducted by two German scientists Otto stern and Walter Gerlach 

(1922). 

 

        Set-up – The experimental set-up is illustrated schematically in Fig.8.3.  

A beam of neutral silver atoms from an over O, that is, a neutral atomic beam 

of silver is directed after properly collimating it through a set of slits S1, S2 into 

an inhomogeneous magnetic field produced between the pole pieces SN.  The 

S-piece is shaped as a knife edge while the N-piece is provided with a groove. 

 

 

 

        A photographic plate P is placed behind the field, perpendicular to the 

knife edge, to record the configuration of the atomic beam after its passage 

through the field.  The whole arrangement is enclosed in an evacuated 

chamber to enable the silver atoms to traverse the field without collision.   

 



        Theory – If a magnetic dipole is placed in a homogeneous magnetic field,  

the forces on the poles are equal and opposite.  So, no net force acts on the 

dipole.  It experiences a torque and the result is a rotational motion of the 

dipole.  In a non-homogeneous field, (here, along z-axis) however, the dipole 

experience a net resultant force (that varies with its orientation relative to the 

field) given by 

 

 Fz  =  where V = potential energy. 

 

        Substituting the value of V from (8.2.6) in equation (8.4.1) 

 

                            Fz  = z  = cos   

 

Where  is the magnetic moment of the atom, z the component of  in z-

direction,  the angle  makes with z-axis and dB/dz the gradient of the 

magnetic field along the z-axis. 

           Due to the force Fz, the dipole makes a translational motion in the z-

direction.  As the net force on  depends on the orientations of the dipoles 

with different orientations will naturally be brought to different positions on 

the photographic plate. 

 

           Results and conclusion – The silver atom has only one valence 

electron.  Its ground state l  = 0 thus gives L = 0 and  = 0.  So, the dipoles 

will experience no force along z-direction, and one would expect that the silver 

atoms would pass undefected to give only one line on the screen.  But Stern 

and Gerlach found in their experiment two distinct lines – one above and other 

below the mean position.  It follows that the magnetic moment of silver atom 

in the ground state is not zero.  The pattern of splitting of the atomic beam on 

the photographic plate (Fig.8.3) confirms that the magnetic moment takes up 

to orientations in the inhomogeneous magnetic field corresponding to two ms-

values, +  and -  

So, over and above the three quantum numbers n, l and ml,  a fourth quantum 

number ms which can assume the values +  and -   only must be required to 

describe each atomic state.  Stern-Gerlach experiment conclusively 



demonstrates the existence of an additional angular momentum vector which is 

quantized similar to the orbital angular momentum L. 

 

        The Splitting gives two short lines on the photographic plate and it is 

possible to determine from the distance between the lines (Illustrated Ex.15)  

the magnetic moment of silver atoms and hence the electronic magnetic 

moment. 

 

      A question may however arise:  Could the pattern be produced by spinning 

particles other than electrons – protons and neutrons in the nucleus?  The 

magnitude of magnetic dipole is inversely proportional to the mass of the 

particle.  So, for proton, it would be about 2000 limes smaller, Later, Frisch, 

Eastermann and Stern measured this small magnetic dipole to distinguish it 

from that of electron spin. 

 

Electron spin  

 

The idea of spinning electron was first introduced by Uhlenbeck and Goudsmit 

(1925).  To explain the multiplet structure (fine structure) of spectral lines, 

they found it necessary to assume that electron must have another angular 

momentum, in addition to the orbital one, of value equal to  h / 2 .  This 

angular momentum is referred to as spin angular momentum or spin of the 

electron and is specified by the spin quantum number, s = .  They also 

proposed that the spin angular momentum vector  is similar to the orbital 

angular momentum vector  and can have (2s + 1) values + h/2 and –h/2.  The 

magnetic spin quantum number ms can thus have the values   .  The spin 

angular momentum vector   has the magnitude   =  = 

h.   

 

              The energy of the two atomic states corresponding, to ms – values   

will be degenerate.   The atom, when placed in a magnetic field, say along z-

direction, the states for ms =   and ms =  will spilt into two distinct states, 



S= h 

----------

----------

--- 

-----------

-- 

illustrated in Fig.8.4.  The ms =  state is known as the spin `up’ state and the 

ms =  state is known as the spin `down’ state. 

 

          The magnetic moment associated with spin angular momentum  is 

given by 

 

 

 

 

 

                                        =-1/2 

 

 

 

 

The quantization of S in an external magnetic field.  The z-component of S=  

 

                      s =   

                      = ,  =   

        For orbital angular momentum  the corresponding relation is 

   

       We now introduce a new quantity – the gyromagnetic ratio, .  The 

numerical factor that relates the magnetic moment in units of Bohr magneton 

to angular momentum vector in units of h is  called the gyromagnetic ratio,   

Corresponding to spin, we thus have s, and corresponding to the orbital 

angular momentum, we have l. 

From (8.5.1) and (8.5.2) we get 

 s = B /h = /h  

 l  =  =  

So that we have plainly l = 1 and   = 2 

=1/2 



           Pauli in 1920 first suggested the existence of the fourth quantum 

number over and above n, l and ml without however any explanation for its 

significance.  This was followed, in 1922 by Stern-Gerlach’s experiment who 

demonstrated unambiguously the existence of another angular momentum in 

addition to the orbital one of the electron.  The experiment is described already 

in Art. 8.4 

          The above values of  and S may be obtained from the relativistic 

quantum mechanical theory of electron by Dirac. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.3 Spectra of alkali metals (optical spectra): 

The outer (valence) electrons of an atom determine the chemical 

and optical properties of their atoms. The electrons in the closed inner 

orbits do not take part in the emission of spectral lines. 

Spectral terms: 

Atoms are divided into two main categories, viz one electron and many electron 

systems.  

(1) The alkali metals (such as lithium, sodium and potassium) have a single valence

electron outside the completely filled sub shells. The valence electron in the alkali metals

behaves like the orbiting electron in the hydrogen atom. Hence alkali metals have

hydrogen- like spectra. Their spectrum is referred to one-electron spectra.

(2) In many electron system, the atoms have more than one valence or optical

electron outside completely filled sub-shells. Hence they become effective in fixing the

spectral properties. For example, the alkaline earths belonging to the two –electron

system have spectra, which are similar among themselves.

Spectral notation: 

The states of an atom, in which the values of its L vector are 0,1,2,3,4,5 are 

represented by the capital letters S, P, D, F G,H etc.  The value of the total angular 

momentum of the atom J is written as a subscript at the lower right of the letter 

representing the particular L value of the atomic state. The multiplicity of the total spin 

(s) is written as a superscript at the upper left of the letter. If S is the total spin the

multiplicity is equal to 2S+1.

For example,

(1) A state with L = 1, S = ½ and J = 3/2 would be written as 2P3/2 and read “doublet

P three halves”. (Since S=1/2 the multiplicity of the state = 2 X ½ + 1 = 2).

(2) A state with L = 2, S = 1 and J =2 would be written as 3D2 and read “triplet –D

two “ [Note J = L ± S]



Selection Rules: 

An electron cannot jump from one energy level to all other energy levels. A 

transition of an electron between levels is possible only if certain rules called selection 

rules are satisfied. For the vector atom model three selection rules have been devised 

[L,S,J]. 

1) For  L is DL ±1 i.e., those lines are observed for which the value of L changes by

±1. For example, L can change from 0 to 1 (DL=1) or from 1 to 0 (DL=-1). L cannot

change from 0 to 2 (DL=+2) or from 2 to 0 (DL=-2). This shows that the transition is

possible between S and P levels (DL=±1), but not possible between S and D levels

(DL=±2)

2) For J is DJ=±1 or 0 ; but 0®0 is excluded.

3) For S is DS=0

Intensity Rules: 

 Whether an allowed transition is weak or strong is determined using this. They are 

1) Transition for which L and J changes in the same way (i.e., DJ=DL) are strong.

For other changes in J (DL¹DJ) we get weak transition.

2) Transitions for which L and J increase. (i.e., L®L+1 and J®J+1) are less intense

than those for which L and J decreases (i.e., L®L-1 and J®J-1)

3) Transitions for which changes is L and J are opposite (i.e., DL=-DJ) are forbidden.

Hence intensity rules are written as

DL=-1 DJ=-1 Strongest 

DL=-1 DJ=0 Less intense 

DL=+1  DJ=+1 Weak 

DL=+1  DJ=0 very weak 

DL=-1 DJ=+1 Forbidden 

DL=+1  DJ=-1 Forbidden 
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2. Sharp series.

This type of series comes from the transitions from S-levels (exclusive of the 

lowest) to the lowest of the P- levels. 
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3. The diffuse series.

It arises from the transitions between the various D- levels and the P-level. 

The wave number of the series is given by the relation 
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4. Fundamental series or Bergmann Series.

The fundamental series arises from the transitions from various F-levels to the 

lowest D- level. 

The wave number of the series is expressed by the relation 
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Here ms  ,  mp, mD and mF are the characteristic constants of sharp, principal, diffuse and 

fundamental series, respectively. The abbreviated forms for writing the wave number of 

each series are as follows: 

1. (1, ms) ¬ (m, mp) with m 2³ Principal series 

2. (2, mp) ¬(m, ms) with  m 2³ Sharp series 

Different series in Alkali Spectra : Main features 

 The alkali spectrum consists of spectral lines which can be classified into four series: 

principal series, sharp series, diffuse series and fundamental series. The principal series is 

the most prominent and can be observed in emission as well as in absorption spectrum. 

The other series are observed in emission spectrum only. 

1. Principal Series:

 The series arises from the transitions between various P- levels and lowest S-

level. The lowest S-level has the lowest possible value for the energy and represents the 

ground state of the atom. The wave number of the series is given by the relation 



      3.   (2, mp) ¬(m, mD) with m 3³   Diffuse series 

      4.   (3, mD) ¬(m, mF) with m 4³   Fundamental series 

The other important features of the series are: 

1. The sharp and diffuse series have a common limit.

2. The wavenumber interval between this common limit and the limit of the

principal series is equal to that of first line of principal series.

Energy levels in Alkali Spectra and Quantum defect 

 The emission of alkali spectral lines can be fairly explained on the same lines as 

the Bohr-Sommerfeld theory for hydrogen atom. An atom has a number of discrete 

energy states. Each state is characterized by a total quantum number

(n=1,2,3 ….¥).For each value of n, there are component levels labeled by an 

additional quantum number l,called the ‘orbital’ quantum number. l can take values 

0,1,2………..(n-1). Thus n=1 state has only one level (l=0);n=2 state has two levels 

(l=0,1) and so on. The levels corresponding to l=0,1,2,3…….. are called 

s,p,d,f……….levels respectively. Thus n=1 state has a level called 1s; then n=2 state 

has two levelscalled 2s and 2p; the n=3 state has three levels called 3s, 3p and 3d; the 

n=4 state has four levels 4s, 4p, 4d, 4f and so on. 

The energies of these levels are given by 

En, l = -
( )2

D-n

Rhc

 Here, D is called ‘quantum defect’ and depends on l. Thus the energies of levels 

with same n but different l are different. 

Nonpenetrating and Penetrating Orbits 

(i) Nonpenetrating Orbits. We assume that the charge due to the electrons in the

closed core is distributed uniformly over a hollow sphere of radius r with the

nucleus(N) at its centre (Fig.1.2). Suppose in the course of its motion round the

nucleus, the elliptic orbit of the single optical electron in an alkali atom of atomic

number Z does not penetrate the closed orbits or core of (Z-1) electrons. We expect







(i) When the electron jumps from any p- level to the lowest s- level (3s), it emits a line of

principal series.

(ii) When the electron jumps from any s- level to the lowest p- level (3p), it emits a line of

Sharp series.

(iii) When the electron jumps from any d- level to the lowest p- level (3p), it emits a line of

diffuse series.

(iv)When the electron jumps from any f- level to the lowest d- level (3d), it emits a line of

fundamental series.

Thus emission of all the spectral series is explained. 

The different series in the spectrum arise from the following transistions of the optical 

electron. 

Principal series n P2 ® 32S , n= 3,4,5…….. 

Sharp series n S2 ® 32P , n= 4,5,6…….. 

Diffuse series n D2 ® 32P , n= 3,4,5……... 

Fundamental series n F2 ®32D, n= 4,5,6……... 

For a given set of values of the principal quantum number, we get several series here, 

unlike in the case of hydrogen. 







Fig. 1.5 

Calculation: 

Let dw  be the change in angular velocity caused by the field .For the 

clockwise direction, the additional radial force is directed away form the 

center. Hence 

          F –bev = m (w + dω)2r (2) 

i.e., mw2r – m(w + dw)2 r = Bewr , neglecting higher powers (i.e., dw)2

we get 

-2m r w dw= B e r w [v = r w] 

dw = -Be / 2m             (3)  

For the circular motion in the anticlockwise direction, the additional force is directed 

towards the centre. 

Hence  F + Bev = m (ω + δω)2 r

Or
m

Be

2
+=dw        (4) 

From equation (3) and (4) we can write 

m

Be

2
±=dw        (5) 

If ν is the frequency of vibration of the electron then 

ω = 2πν  :   δω = 2πδν  or δν = δω / 2π 

\ Change in frequency of the spectral line

m
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p
dn

4
±=        (6) 

If ν and λ are the frequency and wavelength of the original line, then 
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c
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l
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c
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2) When viewed transversely i.e., perpendicular to the direction of the magnetic

field, a single spectral line is split up into three components. The central line has the same

wavelength as the original line and is plane polarized with vibrations parallel to the field.

The outer lines are symmetrically situated on either side of the central line. The

displacement of either outer line from the central line is known as the Zeeman shift. The

two outer lines are also plane polarized having vibrations in a direction perpendicular to

the field and is called Normal Transverse Zeeman effect.

Explanation: (Lorentz classical theory) 

The emission of light by gas is due to the vibratory motion of the electrons and it 

executes simple harmonic vibration about the centre of the atom. The frequency of the 

spectral line is given by the frequency of vibration of electron. Any linear motion of an 

electron can be resolved into three components namely a linear motion along the 

magnetic field and two opposite motions perpendicular to the field. The linear motion 

along the field is not affected and hence the frequency of this component is unchanged by 

the magnetic field. The other two circular components are affected by the magnetic field, 

one being retarded and other accelerated. Hence the frequency of one of these circular 

components is increased and that of the other is decreased by the same amount. 

In the longitudinal view, the unaltered linear component along the field gives no 

light waves along the direction of observation due to the transverse nature of light 

vibrations. Hence the original line is not observed. The two components at right angles to 

the field produce circularly polarized light.  

In the transverse, the unaffected linear component gives out vibrations parallel to 

the field and hence perpendicular to the direction of observation. This gives the central 

line of the triplet occupying the same position as the original line and plane polarized 

with vibrations parallel to the field. The two circular vibrations which are altered in 

frequency gives out vibrations perpendicular to the field and when viewed sideways 

appear as plane polarized vibrations in opposite sides. 





But Be/2m = ω and l cosθ is the projection on B = ml , then 
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Now, ml can have (2l + 1) values from +l to-l . It shows an external magnetic field will 

split a single energy level into (2l + 1) levels. Then d-state (l=2 ) is split into 5 sub-levels 

and p-state (l=1 ) is split into 3 sub- levels. (Fig. 37) 

Let 0E ¢ represent the energy of the level l =1 in the absence of the magnetic field and BE¢

represents the energy level in the presence of magnetic field. Then 
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Similarly if BEandE ¢¢¢¢
0  represent the energies of the level, l=2 without and with 

magnetic field. Then,  
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Hence the quantity of energy radiated in the presence of magnetic field is 
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Fig 1.8 

The resultant magnetic moment of the electron, each of these vectors µ l and µ s is resolved 

into two components, one along J and other perpendicular to it. The perpendicular 

component of each vector, averaged over a period of the motion is zero, since it is 

constantly changing direction. Hence the effective magnetic moment of the electron, 

µ  l = component of µ l  along the direction of J + component of µ s along the direction of J 
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Writing J2 = J(J+1) and so on, we get 
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 = g and it is called Lande ‘g’ factor. 

Hence µ J = Jg
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If the atom is placed in a weak magnetic field, the total angular momentum vector J 

precess about the direction of the magnetic field axis. The additional energy D E due to 

the action of the magnetic field on this atomic magnet is  

( ) ( )BJBJg
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But ( )BJJ ,cos  is the projection of the vector J on the direction of the magnetic field mJ.

Hence JmBg
m

eh
E

p4
=D

The quantity 
m

eh

p4
B is called Lorentz unit. It is the unit of energy used for expressing the 

splitting of the energy levels in a magnetic field. 





State L S J g mJ mJ g 

2S1/2 0 ½ ½ 2 ½ , -1/2 1 , -1 

2P1/2 1 ½ ½ 2/3 ½ , -1/2 1/3 , -1/3 

2P3/2 1 ½ 3/2 4/3 3/2 ,1/2 

-1/2 , -3/2

2 , 2/3 

-2/3 ,-2

The longer wavelength component 2P1/2 › 2S1/2 splits into four lines. The shorter 

wavelength component 2P1/2 › 
2S1/2 splits into six lines.   Thus the introduction of 

electron spin has led to the complete agreement between experimental results and the 

theory of the anomalous Zeeman effect. 

Note: In equation(3), the introduction of 2S, the factor 2 enters because of the anomalous 

gyrometric ratio for the intrinsic magnetic moment 
mc

eh
S

p
m

4
=  not associated with the

orbital motion. The ratio of intrinsic magnetic moment to spin is 
mc

e

S
s

2
2=

m
which is

twice the corresponding ratio for orbital motion. 

Paschen – Back effect: 

Paschen and Back found that whatever be the anomalous Zeeman pattern of a 

given line in a weak magnetic field, the pattern always approximates the normal Zeeman 

triplet as the field strength is progressively increased. The reduction may occur either 

through the coalescence of lines or through the disappearance of certain lines. This 

transition phenomenon is called Paschen-Back effect. 

Explanation: In a strong magnetic field, the coupling between L and S breaks down and 

J loses significance. Also L and S are quantized and process separately about the external 

magnetic field B independent of each other. (Fig. 1.10). the energy change due to 

the presence of the field will be made up of two parts, one arising from the precession 

of L about B and the other from the precession of S about B. 







 

2.6 Stark Effect 

 

The stark effect is the electrical analogue of the Zeeman effect. The 

Stark effect is the splitting of spectral lines due to the action of an 

external lines due to the action of an external electric field on the 

radiating substance. Even very strong external electric fields are weak 

compared to the inter atomic fields.  Hence the action of electric field on 

the motion of the atomic electrons can be regarded as small 

perturbations consequently the stark line splitting is very minute and can 

be observed only with instruments having a high resolving power.  The 

lines are split into a series of components (satellites) located, in case of 

hydrogen, symmetrically on both sides of the original line. 

Experimental study.  Here the hydrogen atoms emitting spectral lines 

are subjected to a powerful electric field.  The arrangement used by 

Stark is shown in the figure.  The canal rays are produced in an ordinary 

glass discharge tube provided with a perforated cathode C.  when the 

pressure in the tube is not very low, discharge takes place between the 

anode A and cathode C maintained at a suitable P.D.  the canal rays 

stream through the perforations in the cathode and form behind the 

cathode narrow cylindrical bundles of luminous rays.  An auxiliary 

electrode F is placed parallel and close to C at a distance of a few 

millimeters.  A very strong electric field of several thousand volts per 

metre is maintained between F and C.  The effect produced can be  

studied both transversely and longitudinally.  Stark observed that the 

lines in the lines in the spectrum emitted by the canal rays of hydrogen 

were split up into numerous sharp components under the action of the 

electric field. 

Results. The results obtained with the lines of the Balmer series of the 

hydrogen spectrum are given below: 

(1) Every line is split up into a number of sharp components.  All 

hydrogen lines form symmetrical patterns.  The pattern depends 



markedly on the quantum number n of the term involved. The number 

of lines and the total width of the pattern increases with n.  thus, the 

number of components of   line is greater than that of the  line; 

similarly, the number of components of   is greater than that of  . 

(2) Observation perpendicular to the direction of the electric field

(transverse view) shows that the components are polarized, some 

parallel to the direction of the field and other perpendicular to it.  

(3) Upto fields of about  V/m, the resolution increases in proportion 

to the field strength (E) .  In the region, we have linear or first order 

Stark effect. When E exceeds  V/m, there are shifts in the line 

patterns which are proportional to  and we speak of the second order 

Stark effect. 

Illustrated Examples 

► Example 1.  A spectrometer can resolve spectral lines in the region

⋋  6000A, when separated by ⋋= 0.1.A.  Find the value of the 

external magnetic field required to confirm the normal Zeeman triplet. 

Solution.  The energy separation  E between two consecutive spectral 

lines is given by the relation 

 E = BB 

Where B is the external magnetic field. 

 Frequency separation  between them is 

 = BB/h 

  But,   =   = 

    From (8.17.2), using (8.17.3), the magnetic field is given by 

    B = 

    =  0.593 Wb/m2 

► Example 2,  Show that for a given principal quantum number n,

there are n2 possible states. 



Solution.  Every combination of the quantum numbers n, l and ml 

defines a state of the atom.  For a given n, the orbital quantum number l 

has the following values: 

     l = 0, 1, 2, … (n – 1). 

 For every l, again, there would be the following (2l + 1) values 

for the magnetic quantum number ml. 

                                 ml  = 0, 1, 2, …    

            The total number of possible states of the atom is therefore 

 N (n,l,ml) = = 1 + 3 + 5 + … + (2n – 1) = n2
  

► Example 3,  Using the vector atom model, determine the possible 

values of the total angular momentum of an f – electron. 

Solution.  An f-electron has the orbital quantum number, l = 3, Also, its 

spin quantum number s = 1/2. 

 The total angular momentum quantum number, j = l  s = 3   = ,  

. 

 The total angular momentum, J =   =  ,  ;   

► Example 4,   An electron beam enters a uniform magnetic field of 

flux  density 1.2 Wb/m2.  Find the energy difference in eV between 

electrons having spains parallel and anti-parallel to the field. 

Solution.  Energy of magnetic dipole in  a field = BBcos  

         When spin is parallel to the field,  = 0  energy, E1 = BB 

         When spin is antiparallel,  = 180o  energy, E2 = BB 

    Energy difference = 2 BB = 2. x 9.3 x 10-24 x 1.2J 

                                                          = 13.95 X 10-5 Ev 

► Example 5.  An H-atom is placed in a magnetic field of 3T.  

Compute is energy difference between m1 = 1 components in 2p state. 

Solution.  The interaction energy between the magnetic moment of 

electron and the magnetic field B is 

     V = BBml  

           Energy of  ml =  1-state is V1 =  BB 

              Energy of ml = + 1-state is V2 = BB 



      Energy difference = V2 – V1 = 2 BB = 2(9.3 x 10-24) x 3J 

                                               = 55.8 x 10-23 J = 3.48 x 10-4 eV 

► Example 6.   Find the processional frequency of an electron orbit 

when placed in a magnetic field of 6T. 

 Solution.  The frequency  of Larmor precession is given by 

     =  

 Here, we have, B = 6T = 6Wb/m2, e = 1.6 x 10-19 C and m = 9.1 x 

10-21 kg. 

                                                  =   

      = 8.4  

► Example 7.  An atomic state is denoted by 4D5/2.  Give the values of 

L,S and J.  What should be the minimum number of electrons involved 

for this state? Give a possible electronic configuration. 

Solution.  Atomic state is 4D5/2.  So, 2S + 1 = 4  S = 3/2; D indicates L 

= 2 and J = 5/2 (the subscript). 

 Since for each electron s = ½, the minimum number of electrons 

to give S = 3/2 is 3. 

 Possible combination for L = 2 with 3 electrons are:  

    l1 = 0, l2  = 0, l3 = 2;  l1 = 0, l2  = 0, l3 = 1 

 Possible electronic configuration: s2d1 and s1p2.    The first 

configuration is rejected since the net spin = 1/2 .  So, the possible 

configuration is s1 p2.  

► Example 8.  In K, the longest wavelength lines in (n, 1)  (4,0) 

transitions have wavelengths 7699, 7665, 4047 and 4044A respectively.  

How will you construct the relevant part of energy level diagram? Find 

the splitting between the levels with same n and l but different j. 

Solution.  The first two lines arise from transitions between pair of 

levels: n = 4, l = 1, j =  to the ground state : n = 4, l = 0, j =  .  The 

other two arise from transition from higher levels: n = 5, l = 1, j =  to 

the ground state.  So, five levels are to be drawn on the energy level 



diagram: 2 pairs of levels with l = 1 and a single level (ground state) 

with l = 0. 

           Separation between the levels  E  = he  = he  

 For n = 4,  l = 1 for instance, the separation between the two levels is 

E = J  

         = 7.12   

► Example 9.   Calculate the wavelength separation of the fine 

structure resulting from spin-orbit interaction within the hydrogen atom 

at ⋋ = 4000A. 

Solution.  The magnetic field due to the orbital motion of the electron 

around proton is, by Biot-Savart law,  

 B =  with usual meanings of the symbols. 

Here, r = 0.53A, f = c/⋋ = 0.75  1015Hz.  Substituting these values in 

above relation. 

 B = 10-7   = 13.27 Wb/m2 

 Energy separation between split-lines is given by 

 E =   

 

But E = 2 BB = 2  9.3   13.27  24.7  J 

 = 24.7    

  =   =  

 = 1.90  m = 1.99A 

► Example 10.  Find the critical voltage that must be applied to an X-

ray tube to excite the K-series of copper.  Given that the K-absorption 

limit is 1.380 A. 

Solution.  Here, ⋋min = 1.380  m.  From the relation Ve = hc/⋋, 

   V =   =  

      = 8.98 kV 



► Example 11.  The K-absorption edge in tungsten is  = 0.178 A 

and the average wavelengths of some lines in the K-series are ⋋  = 

0.210A, ⋋  = 0.184A, ⋋  = 0.179A.  If a tungsten target is bombarded 

with electrons of 120keV,  find the value of the maximum kinetic 

energies of electrons emitted from n = 1,2 and 3 levels. 

Solution.  The wavelength of the K-series lines are: 

    = W2 – W1 ;   = W3 – W1 

    = W4 – W1 ;   = W  – W1 

But, by the very definition, W  = 0.  We thus have  

 W1 =  = -  eV = -69.7keV 

Energy of the next level is W2 = hc/  + W1 

  W2 =  – 69.7 – (59.1 – 69.7) = -10.6keV 

Similarly, for W3 and W4. 

The maximum kinetic energy of the electrons from each level is  

    Tmax = 120 -  

 Maximum kinetic energy of electron from n = 1 level is 120 – 69.7 = 

50.3 keV, from n = 2 level is 120 – 10.6 = 109.4 keV.  Similarly, for the 

other levels. 

► Example 12.  The -line of an unknown material has an energy of 

66 keV.  Find the atomic number Z of the material. 

Solution.  The energy of -line, hv = 66 keV = 66 x 103 eV. 

 But, we have hv =   (Z – 1)2 =  

 (Z – 1)2 =  6560 

   Z – 1 =  = 81  Z = 82 

► Example 13.  Show that the Lande g-factor for pure orbital angular 

momentum and pure spin angular momentum are respectively 1 and 2.  

Also, evaluate the g-factor for the state 3P1. 



Solution.Pure orbital angular momentum implies  = 0. So,  =  +  

= . 

                                        = 1 +  = 1 

 Pure spin angular momentum implies  = 0.  So,  =  

           = 1 +  = 2. 

For the state 3P1, 2S + 1 = 3  S = 1; P implies L = 1 and J = 

1(subscript) 

                = 1 +  = 1 +  =   

► Example 14.  Draw the Zeeman splittings of the D2  and D2 lines of 

sodium corresponding to the transition from the excited states 32   and 

32   to the ground state 32 .  

 

 Solution.  For 32   level, J = .  So, it splits into two levels for 

which mJ =  and - .  For  2   level, J = .    So, it also splits into two 

levels, for which mJ =  and - .   For  2   level, J = .    So, it also 

splits into two levels, for which mJ =  ,  ,- .  ,- .   

So, the D1 line which is singlet in field-free condition, splits into four 

lines and the D2 line into six lines.  The splitting and the allowed 

transitions are shown in Fig.8.14. 

► Example 15.  In a Stern-Gerlach type experiment, the magnetic field 

varies with distance in z-direction according to dBz/dz = 1.4T/mm.  

Silver atoms travel a distance x = 3.5 cm through the magnet.  The 

speed of atoms emerging from over is v = 750 m/s.  Find the separation 

of the two beams as they leave the magnet.  Mass of silver atom = 1.8 x 

kg and its magnetic moment is 1 Bohr magneton. 

Solution  Potential energy of magnetic moment in the magnetic field is  

                      V =  =  (∵ Field has only z-component) 



  Force on the atom, Fz =   

    Acceleration of a silver atom in passing through the magnet is 

  a =   =  

 Vertical deflection  of either beam is   =  at2, where t = time to 

traverse the magnet = x/v.  So, the separation d of the beams as they 

leave the magnet is  

d =   =  

                           = 1.6 x m = 0.16 nm 

 

 



LEARNING ACTIVITY  

1. Discuss in detail about  normal Zeeman effect 

2. Explain the Experimental determination of Anomalous 

Zeeman Effect. 

3. What is stark effect 

4. Explain the fine structure of D line. 

5. What is Paschen – Back effect  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

 

In this chapter, we studied the spectra H-atom and atoms with more than one 

electron.  While in Bohr’s theory we came Across of only one quantum 

number w required as many as three such numbers in quantum mechanical 

system of one electron atom.  A fourth quantum number, the spin quantum 

number, was soon needed to explain the spectral characteristics of atoms.  And 

also detail studied about the experiment of Stern and Gerlach that established 

the existence of spin, We also detail studied about the Zeeman splitting  of 

spectral lines in a magnetic field and Stark effect of spectral lines in a electric 

field.  
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Summary 

 

 

OVERVIEW 

 

In this chapter on `Atomic Physics’, we shall study the  X ray spectra 

and its types.  We shall also study the diffraction of x rays and detail 

study about Compton effect and its verification 

 

LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 



 

• Origin  of  the  X ray spectra and its types  

• Diffraction of  X rays and bragg law and its applications. 

• Compton effect and its experimental verification 

 

 

3.1 Introduction 

 

A German scientist, Wilhelm Roentgen, in 1895, discovered X–rays 

when he was studying the phenomenon of discharge of electricity 

through gases.  

After performing a series of experiments, Roentgen concluded that 

when a beam of fast moving electrons strike a solid target, an invisible 

penetrating radiation is produced. Due to the unknown  

nature of the radiation, Roentgen called these radiations as X – rays. 

X-rays are electromagnetic waves of short wavelength in the range of 

0.5 Å to 10 Å. Roentgen was awarded Nobel prize in 1901 for the 

discovery of X–rays. 

 

3.2 Origin of X-Rays 

 Production of X–rays – Modern Coolidge tube 

X–rays are produced, when fast moving electrons strike a metal target 

of suitable material. The basic requirement for the production of X–rays 

are: (i) a source of electrons, (ii) effective means of accelerating the 

electrons and (iii) a target of suitable material of high atomic weight. 

The modern type of X-ray tube designed by Coolidge is shown in Fig 

6.16. It consists of a highly evacuated hard glass bulb containing a 

cathode and an anode target. The pressure inside the tube is 10-6 mm of 

mercury. The cathode is a tungsten filament F and is heated by passing a 

current through it from a low tension battery. The electrons are emitted 

by the process of thermionic emission from the cathode. The filament is 

surrounded by a molybdenum cylinder G kept at a negative potential to 



the filament. Hence, the electrons emitted from the filament are 

collimated into a fine pencil of electron beam.  

 

Goolidge tube 

The target T consists of a copper block in which a piece of tungsten or 

molybdenum is fixed. The anode should have the following 

characteristics : 

(i) high atomic weight – to produce hard X-rays 

(ii) high melting point – so that it is not melted due to the bombardment 

of fast moving electrons, which cause lot of heat generation. 

(iii) high thermal conductivity – to carry away the heat generated. 

The face of the copper anode is sloped at about 45o to the electron 

beam. Being good conductor of heat, copper helps to conduct the heat 

efficiently to the water cooling system. A high potential of about 20 kV 

is applied between filament F and the target T. Due to this high potential 

difference, the electrons emitted from the filament are accelerated. 

When these accelerated electrons strike the target, they give up their 

kinetic energy and thereby produce X–rays. 

The intensity of X-rays depends upon the number of electrons striking 

the target. i.e. the rate of emission of electrons from the filament. This 

can be controlled by varying the filament current. 

 

 Soft X–rays and Hard X–rays 

X–rays are of two types : (i) Soft X–rays and (ii) Hard X–rays 

(i) Soft X–rays 



X–rays having wavelength of 4Å or above, have lesser frequency and 

hence lesser energy. They are called soft X – rays due to their low 

penetrating power. They are produced at comparatively low potential 

difference. 

(ii) Hard X–rays 

X–rays having low wavelength of the order of 1Å have high frequency 

and hence high energy. Their penetrating power is high, therefore they 

are called hard X–rays. They are produced at comparatively high 

potential difference. 

The wavelength of X–rays depends upon the kinetic energy of the 

electrons producing them and this kinetic energy depends upon the 

potential difference between the filament and the target. 

Properties of X–rays 

(i) X–rays are electromagnetic waves of very short wave length. They 

travel in straight lines with the velocity of light. They are invisible to 

eyes. 

(ii) They undergo reflection, refraction, interference, diffraction and 

polarisation. 

(iii) They are not deflected by electric and magnetic fields. This 

indicates that X-rays do not have charged particles. 

(iv) They ionize the gas through which they pass. 

(v) They affect photographic plates. 

(vi) X–rays can penetrate through the substances which are opaque to 

ordinary light e.g. wood, flesh, thick paper, thin sheets of metals. 

(vii) When X–rays fall on certain metals, they liberate photo electrons 

(Photo electric effect). 

(viii) X-rays have destructive effect on living tissue. When the human 

body is exposed to X-rays, it causes redness of the skin, sores and 

serious injuries to the tissues and glands. They destroy the white 

corpuscles of the blood. 

(ix) X–rays do not pass through heavy metals such as lead and bones. If 

such objects are placed in their path, they cast their shadow. 

 Detection of X–rays 



The basic properties which are generally used for the detection of X-

rays are : (i) blackening of a photographic plate and (ii) the ionization 

produced by X–rays in a gas or vapour. An ionization chamber, which 

utilizes the property of ionization, is generally used to detect and 

measure the intensity of X-rays. 

 Absorption of X–rays 

When X–rays pass through any material, a part of the X-ray energy is 

absorbed by the material. If a beam of X-rays of intensity I passes 

through a length dx of any material, its intensity is decreased by dI. For 

any given material, the amount of absorbed intensity is μIdx 

where μ is called the absorption co-efficient. i.e., dI = −μIdx 

3.3 Characteristic X-Ray spectrum 

 X–ray spectra – continuous and characteristic X–ray spectra. 

The spectrum from an X-ray tube contains two distinct parts : 

(i) Continuous X–ray spectra 

It consists of radiations of all possible wavelengths, from a certain lower 

limit to higher values continuously, as in the case of visible light. 

Origin – Continuous X–ray spectra 

X-rays are produced, when high velocity electrons strike the target 

material of high atomic number. It has also been mentioned in the 

production of X-rays, that most of the energy of the electrons goes into 

the heating of the target material. 

A few fast moving electrons penetrate deep into the interior of the atoms 

of the target material and are attracted towards the nuclei by the 

attractive forces of their nuclei. Due to these forces, the electrons get 

deflected from their original path. As a result of this, the electrons are 

decelerated, and hence energy of the electron decreases continuously. 

 



 

 Fig continuous of x ray 

This loss of energy during retardation is given off in the form of X-rays 

of continuously varying wavelength. The X – rays consist of continuous 

range of frequencies upto a maximum frequency νmax or minimum 

wave length λmin. This is called as continuous X – rays. The minimum 

wave length depends on the anode voltage. If V is the potential 

difference between the anode and the cathode  

 

The minimum wavelength of the given radiation 

 

where h is Planck’s constant, c is the velocity of light and e, the charge 

of the electron. Substituting the known values in the above equation. 

 

For the given operating voltage, the minimum wave length is same for 

all metals. 

 
(ii) Characteristic X–ray spectra 

It consists of definite, well defined wavelengths superimposed on the 

continuous spectrum. These spectral lines generally occur in the form of 

small groups and are characteristic of the material of the target. 



 

 

 Fig. Characteristic X-ray Spectra 

Origin – Characteristic X–ray spectra 

Few of the fast moving electrons having velocity of about (1/10)th of 

the velocity of light may penetrate the surface atoms of the target 

materials and knock out the tightly bound electrons even from the inner 

most shells (like K, L shells) of the atom. Fig 6.22a shows the case, 

when the fast moving electrons knock off one electron from KShell and 

the vacancy is filled by the nearby electron from the L shell. During this 

transition, the energy difference is radiated in the form of X-rays of very 

small wave length. This corresponds to Kα – line of the series. The 

frequency ν1 of this line is given by the relation (EK – EL) = hν1. 

Suppose, the electron from M shell jumps to the K shell, it gives out Kβ 

line and so on. If an electron jumps from the MShell to the vacant state 

in L-Shell, it contributes Lα line and if the vacancy in L-Shell is filled 

up by an electron of N shell, it contributes Lβ and so on (Fig 6.22b). 



The frequency of radiation depends upon the target material. The X-ray 

spectra consists of sharp lines and is the characteristic of target material. 

Hence this spectra is known as characteristic spectra. 

 

3.4 Moseley’s law 

A comprehensive investigation of characteristic X-ray spectra was made 

by Moseley (1913) who used nearly 40 elements from aluminium to 

gold as targets in X-ray tube.  The radiation from each target was 

analysed by single crystal X-ray spectrograph, using a thin crystal of 

potassium ferrocyanide.  The spectrum was recorded on a photographic 

plate and the entire arrangement was placed in a vacuum chamber to 

avoid the absorption of long wavelength X-rays in air. 

 The photographic plate, on development, showed 

traces of dark lines of varying intensities, each corresponding to a 

characteristic line of the given element.  The characteristic spectra could 

be easily divided into two distinct groups- a short wavelength group, 

generally less than 1 nm (K-series) and a long wavelength group, 

greater than 1 nm (L-series).  The wavelength of the L-series were 

roughly ten times as great as those of the K-series.  Subsequent 

investigations confirmed the existence of two other series line (M-series 

and N-series) of longer wavelengths in heavier atomic species (Z > 66). 

              Moseley demonstrated that, unlike the optical spectra., the 

characteristic spectra are much simpler in character consisting, as they 

are, of comparatively fewer lines.  Further they are of the same type, 

irrespective of the element, except that the frequencies of the 

corresponding lines increase with increasing atomic weight.  The K-

series spectra of different elements are shown in Fig. 

 Moseley’s law – Moseley from his investigation 

deduced the following relation between the frequency v of any 

particular line emitted by an element and its atomic number Z. 

   

 

  

 



Where a and b are constants characteristic of the element. 

            This is known as the general form of Moseley’s law. 

 

 

 Fig.1 Moseley law 

 By plotting the square root of the frequency v of -

line against the atomic number Z of the element concerned, Moseley 

obtained the curve A of Fig.1 – a straight line given by the above 

equation.  The same linear relation was found to hold good for any X-

ray line in any series, of course with different slopes.  The plot of  

vs. Z is known as Moseley’s plot or Moseley’s diagram.  The curve B in 

Fig.1 is a plot of against atomic weight.  It is apparent from the two 

curves that in so far as the frequency of the characteristic line is 

concerned, the atomic number is more fundamental than the atomic 

weight.  That is to say, the chemical identity of an element depends on 

the atomic number Z and not on the atomic weight or the mass number 

A. 

 Derivation of Moseley’s law  The general form of 

Mosely’s law can be easily derived from Bohr’s theory. 

   Let a transition occur from state n1 to state 

n2.  So, the energy of the emitted X-ray photon is 

     hv = RchZ2(1/ ) 

                                   = RcZ2(1/ ) = a2Z2 

Where R = Rydberg constant, a2 = Rc (1/ ) and c is the 

velocity of light in free space. 

       



 For -line, n1 = 1, n2 = 2, so that a2 =  Rc. 

 The present of the constant b in Moseley’s equation, as 

deduced from experimental data, has been interpreted as the shielding 

effect of nucleus by the remaining electrons in the lower level and b is 

known as the screening constant.  For instance, for -emission one of 

the two K-electrons is first emitted leaving a single electron is K-shell.  

The negative charge of this residual electron partially screens the 

nuclear charge +Ze of the atom.   The effective Coulomb force on the L-

electron is thus due approximately to a net positive charge + (Z – 1)e.  

So, instead of Z2  in (8.15.2), we should rather write  (Z – 1)2,  

                                i.e., v =  Rc (Z – 1)2 

           or,  = a (Z-1)  

where  =  Re, as before, and b = 1. 

           With this interpretation, we have the general form of Moseley’s 

law. 

 

            Importance of Moseley’s work  Moseley’s investigation showed 

for the first time that it would be more logical to arrange elements in the 

Periodic table in order of increasing atomic number instead of atomic 

weight.  When this was done certain anomalies of the old periodic table 

were removed.  For example, cobalt (Z – 27, A – 58.9) should precede 

nickel (Z – 28, A = 58.7) though the atomic weight of Co is higher than 

that of Ni.  Other such examples are argon-potassium and tellurium-

iodine. 

 Moseley’s work also helped (i) in the discovery of new 

elements in the missing gaps of Z-values 21, 43, 61, 72 and 75 in the old 

Periodic table and (ii) in the determination of atomic numbers of rare-

earth elements and fixing their positions in the Periodic table. 

 

Moseley investigated systematically, the characteristic radiations 

emitted by different targets. Based on his experiments, he has concluded 



that the frequency of the spectral line in the characteristic X-ray 

spectrum is directly proportional to the square of the atomic number (Z) 

of the element considered. This is known as Moseley’s law. 

where a and b are constants depending upon the particular spectral line. 

Applications of Moseley’s law 

(i) Any discrepancy in the order of the elements in the periodic table can

be removed by Moseley’s law by arranging the elements according to 

the atomic numbers and not according to the atomic weights. 

(ii) Moseley’s law has led to the discovery of new elements like

hafnium (72), technetium (43), rhenium (75) etc. 

(iii) This law has been helpful in determining the atomic number of rare

earths, thereby fixing their position in the periodic table. 

Applications of X–rays 

X–rays have a number of applications. Some of them are listed below: 

Medical applications 

(i) X–rays are being widely used for detecting fractures, tumours, the

presence of foreign matter like bullet etc., in the human body. 

(ii) X–rays are also used for the diagnosis of tuberculosis, stones in

kidneys, gall bladder etc. 

(iii) Many types of skin diseases, malignant sores, cancer and tumours

have been cured by controlled exposure of X-rays of suitable quality. 

(iv) Hard X–rays are used to destroy tumours very deep inside the body.

Industrial applications 

(i) X–rays are used to detect the defects or flaws within a material

(ii) X–rays can be used for testing the homogeneity of welded joints,

insulating materials etc. 

(iii) X-rays are used to analyse the structure of alloys and the other

composite bodies. 

(iv) X–rays are also used to study the structure of materials like rubber,

cellulose, plastic fibres etc. 

Scientific research 



(i) X–rays are used for studying the structure of crystalline solids and 

alloys. 

(ii) X–rays are used for the identification of chemical elements 

including determination of their atomic numbers. 

(iii) X–rays can be used for analyzing the structure of complex 

molecules by examining their X–ray diffraction pattern. 

 

3.5 Diffraction of X–rays 

Soon after the discovery of X-rays, Schuster pointed out that X-rays 

behave as electromagnetic waves of wavelength much shorter than that 

of visible light. Attempts were made to measure the wave length of X-

rays by means of diffraction gratings which proved unsuccessful, as the 

grating failed to disperse X–rays on account of their very small 

wavelength. Obviously, diffraction effects can only be observed if the 

spacing between the lines ruled on the grating is of the order of 

magnitude of wavelength of the wave used. Thus, in order to diffract X–

rays, grating with much finer rulings, having distance between rulings 

comparable to the wave length of X–rays are required.  It is impossible 

to construct a grating of such fine dimensions artificially. 

In a crystal, the atoms or molecules are arranged symmetrically in a 

three dimensional space. Any plane containing an arrangement of atoms 

is known as lattice plane or cleavage plane. The spacing between the 

atoms is of the order of 10-10 m, comparable to the wavelength of X-

rays. It was suggested that the regular arrangement of atoms or 

molecules in the cleavage planes of a crystal might provide a grating 

element suitable to diffract X–rays. The crystal might serve as a three 

dimensional grating, whereas optical grating is a two dimensional one. 

Laue experiment 

Von Laue, in 1913, suggested that a crystal can act as a three 

dimensional grating for an X-ray beam. The experimental arrangement 

used to produce diffraction in X–rays by Laue is shown in Fig 6.17(a). 



 

Fig. Laue experiment setup 

 

Fig. Laue spot 

 

X–rays from the X–ray tube is collimated into a fine beam by two slits 

S1 and S2. The beam is now allowed to pass through a zinc sulphide 

(ZnS) crystal. The emergent rays are made to fall on a photographic 

plate P. The diffraction patten so obtained consists of a central spot at O 

and a series of spots arranged in a definite pattern about O as shown in 

Fig b. The central spot is due to the direct beam, whereas the regularly 

arranged spots are due to the diffraction pattern from the atoms of the 

various crystal planes. These spots are known as Laue spots. The Laue 

experiment has established following two important facts : 

(i) X–rays are electro magnetic waves of extremely short wave length. 

(ii) The atoms in a crystal are arranged in a regular three dimensional 

lattice. 



Bragg’s law for X-ray diffraction 

W.L. Bragg and W.H. Bragg studied the diffraction of X–rays in detail 

and used a crystal of rock salt to diffract X–rays and succeeded in 

measuring the wavelength of X–rays. 

Consider homogeneous X–rays of wave length λ incident on a crystal at 

a glancing angle θ. The incident rays AB and DE after reflection from 

the lattice planes Y and Z travel along BC and EF respectively as shown 

in Fig 6.18. 

 

Fig. Braggs Law 

Let the crystal lattice spacing between the planes be d. BP and BQ are 

perpendiculars drawn from B on DE and EF respectively. Therefore, the 

path difference between the two waves ABC and DEF is equal to PE + 

EQ. 

In the ΔPBE, sin θ = PE / BE (or) PE = BE sin θ = d sin θ 

In the ΔQBE, sin θ = EQ/BE (or) EQ = BE sin θ = d sin θ 

∴ Path difference = PE + EQ = d sinθ + d sinθ = 2d sinθ 

If this path difference 2d sin θ is equal to integral multiple of 

wavelength of X-ray i.e. nλ, then constructive interference will occur 

between the reflected beams and they will reinforce with each other. 

Therefore the intensity of the reflected beam is maximum. 

∴ 2d sin θ = nλ 

where, n = 1, 2, 3 … etc. 



This is known as Bragg’s law. 

Bragg’s X-ray spectrometer 

Bragg’s spectrometer used to determine the wavelength of X – rays is 

shown in Fig . Bragg’s spectrometer is similar in construction to an 

ordinary optical spectrometer. 

 

Fig. Bragg’s spectrometer 

X–rays from an X-ray tube are made to pass through two fine slits S1 

and S2 which collimate it into a fine pencil. This fine X-ray beam is 

then made to fall upon the crystal ‘C’ (usually sodium chloride crystal) 

mounted on the spectrometer table. This table is capable of rotation 

about a vertical axis and its rotation can be read on a circular graduated 

scale S. The reflected beam after passing through the slits S3 and S4 

enters the ionization chamber. The X-rays entering the ionization 

chamber ionize the gas which causes a current to flow between the 

electrodes and the current can be measured by galvanometer G. The 

ionization current is a measure of the intensity of X-rays reflected by the 

crystal. 

The ionization current is measured for different values of glancing angle 

θ. A graph is drawn 

between the glancing angle θ and ionization current (Fig 6.20). 



 

Fig. Plot of glancing angle and ionization current 

For certain values of glancing angle, the ionization current increases a b 

r u p t l y . The first peak corresponds to first order, the second peak to 

second order and so on. From the graph, the glancing angles for 

different orders of reflection can be measured. Knowing the angle θ and 

the spacing d for the crystal, wavelength of X–rays can be determined. 

 

3. 6 THE POWDER CRYSTAL METHOD  

If a powdered specimen is used, instead of a single crystal, then there is 

no need to rotate the specimen, because there will always be some 

crystals at an orientation for which diffraction is permitted. Here a 

monochromatic X-ray beam is incident on a powdered or 

polycrystalline sample. This method is useful for samples that are 

difficult to obtain in single crystal form.  



 

Fig. Experimental arrangement in powder method 

The powder method is used to determine the value of the lattice 

parameters accurately. Lattice parameters are the magnitudes of the unit 

vectors a, b and c which define the unit cell for the crystal. For every set 

of crystal planes, by chance, one or more crystals will be in the correct 

orientation to give the correct Bragg angle to satisfy Bragg's equation. 

Every crystal plane is thus capable of diffraction. Each diffraction line is 

made up of a large number of small spots, each from a separate crystal. 

Each spot is so small as to give the appearance of a continuous line. 

 

Fig. Cones of Diffracted Beams of X ray 

A sample of some hundreds of crystals )i.e. a powdered sample( show 

that the diffracted beams form continuous cones. A circle of film is used 



to record the diffraction pattern as shown. Each cone intersects the film 

giving diffraction lines. The lines are seen as arcs on the film. A very 

small amount of powdered material is sealed into a fine capillary tube 

made from glass that does not diffract x-rays. The specimen is placed in 

the Debye Scherrer camera and is accurately aligned to be in the centre 

of the camera. X-rays enter the camera through a collimator. The 

powder diffracts the x-rays in accordance with Braggs law to produce 

cones of diffracted beams. These cones intersect a strip of photographic 

film located in the cylindrical camera to produce a characteristic set of 

arcs on the film.  

 

When the film is removed from the camera, flattened and processed, it 

shows the diffraction lines and the holes for the incident and transmitted 

beams. Application of XRD 1. Differentiation between crystalline and 

amorphous materials; 2. Determination of the structure of crystalline 

materials; 3. Determination of electron distribution within the atoms, 

and throughout the unit cell; 4. Determination of the orientation of 

single crystals; 5. Determination of the texture of polygrained materials; 

6. Measurement of strain and small grain size…..etc Advantages  

• Powerful and rapid (< 20 min) technique for 

identification of an unknown mineral  

• In most cases, it provides an unambiguous mineral 

determination  

• Minimal sample preparation is required  

• XRD units are widely available  

• Data interpretation is relatively straight forward  

• X-ray is the cheapest, the most convenient and widely 

used method.  

• X-rays are not absorbed very much by air, so the 

specimen need not be in an evacuated chamber.  

 

 

 



Disadvantage  

• Homogeneous and single phase material is best for 

identification of an unknown  

• Must have access to a standard reference file of 

inorganic compounds (d-spacings, hkl)  

• Requires tenths of a gram of material which must be 

ground into a powder  

• For mixed materials, detection limit is ~ 2% of sample  

 

3.7 ROTATING CRYSTAL METHOD  

In the rotating crystal method, a single crystal is mounted with an axis 

normal to a monochromatic x-ray beam. A cylindrical film is placed 

around it and the crystal is rotated about the chosen axis. 

 

Fig. Schematic representation of Rotating Crystal Technique   

As the crystal rotates, sets of lattice planes will at some point make the 

correct Bragg angle for the monochromatic incident beam, and at that 

point a diffracted beam will be formed. Lattice constant of the crystal 

can be determined by means of this method; for a given wavelength if 

the angle θ at which a  d h,k,l  reflection occurs is known, can be 

determined.  



 

The reflected beams are located on the surface of imaginary cones. By 

recording the diffraction patterns )both angles and intensities( for 

various crystal orientations, one can determine the shape and size of unit 

cell as well as arrangement of atoms inside the cell.  

 

3.8 Compton Effect 

When a monochromatic beam of X-rays are scattered by a material of 

low atomic number (paraffin or graphite), then the scattered ray consists 

of two components, one component having the same wavelength as the 

incident X-rays and the other with a higher wavelength. This effect is 

known as Compton Effect. 

 

Theory of Compton Effect 
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Let us consider a photon of energy ‘hν’ and momentum ‘hν/c’ strikes an 

electron at rest. The initial momentum of the electron is zero and only 

rest mass energy m0c
2. During the collision, the X-ray photon gives 

some energy to the free electron. Due to this energy transfer, the 

electron recoil out with energy ‘mc2’ and momentum ‘mv’ and moves 

out at an angle ‘θ’ to the x-axis. The scattered photon comes out with 

lesser energy hν’ and momentum hν’/c inclined at an angle φ from the 

original direction. 

Let us calculate the total energy before and after collision. 

 

Energy before and after collision 

Initial energy of photon    = hν 

Final energy of photon    = hν’ 

Initial energy of electron    = m0c
2 

Final energy of electron    = mc2 

Total initial energy    = hν  +  m0c
2 

Total final energy    = hν’ + mc2 

 

According to the principle of conservation of energy 

hν  +  m0c
2     = hν’ + mc2 ------------------ (1) 

 Momentum before and after collision along x-axis 

Initial momentum of photon   = hν/c 

Final momentum of photon   = (hν’/c) cosφ 

Initial momentum of electron  = 0 

Final momentum of electron   = mv cos θ 



Total initial momentum   = hν/c + 0 

Total final momentum   = (hν’/c) cos φ + mv cos θ 

 

According to the principle of conservation of momentum 

 

hν/c + 0  =   (hν’/c) cos φ + mv cos θ ------------------ (2) 

 

Momentum before and after collision along y-axis 

Initial momentum of photon  = 0 

Final momentum of photon  = (hν’/c) sinφ 

Initial momentum of electron  = 0 

Final momentum of electron  = - mv sin θ 

Total initial momentum  = 0 

Total final momentum  = (hν’/c) sin φ - mv sin θ 

 

According to the principle of conservation of momentum 

 

     0  =    (hν’/c) sin φ - mv sin θ ------------- (3) 

 

From eqn (2)   mvc cos θ   =   h(ν-ν’ cos φ) ------------------ (4) 

From eqn (3)     mvc sin θ    =   hν’sinφ ------------------ (5) 

Squaring and adding eqns (4) and (5) 

 



 m2v2c2  = h2(ν2-2 ν ν’ cos φ + ν’2 cos2 φ) +h2 ν’2 sin2 φ 

m2v2c2  = h2(ν2-2 ν ν’ cos φ + ν’2)  ------------------ (6) 

 

from eqn (1) 

mc2      = h ν - h ν’ + m0c
2   

             = h (ν - ν’) + m0c
2   

Squaring 

    m2c4      =     [h (ν - ν’) + m0c
2 ]2  

    m2c4      =     [h(ν - ν’) ]2 + 2h(ν - ν’) m0c
2 + [m0c

2]2 

    m2c4     =      h2(ν2 - 2 ν ν  + ν’2 ) + 2h(ν - ν’) m0c
2  + m0

2c4  ------------ 

(7) 

 

Subtracting (6) from (7) 

   m2c4 - m2v2c2   =   h2(ν2 - 2 ν ν  + ν’2 ) + 2h(ν - ν’) m0c
2  + m0

2c4   

- h2ν2 + 2h2 ν ν’ cos φ – h2 ν’2)  

   m2c2 (c2 – v2)  =   - 2 h2 ν ν’(1 - cos φ)  + 2h(ν - ν’) m0c
2  + m0

2c4  ----- 

(8) 

 

According to the theory of relativity, we have, 
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Multiply both sides by c2 
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From equations (8) and (9) 
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i.e., change in wavelength (or) Compton shift is given by, 

                 

                                                                          

                                                                            

                                                                             ---------------- (10) 

  

 Here,  dλ  is independent of wavelength of incident radiation as 

well as the nature of the scattering substance.  

 Thus the change in wavelength (or) Compton Shift purely 

depends on the angle of scattering. 

 

Special Cases 

 

Case (i)      When  φ = 0 , cos φ = 1 hence dλ = 0 

 

Case (ii)    When  φ = 90° , cos φ = 0 ,  
cm

h
d

0

=
 

                                   dλ    =  

34

31 8

6.626 10

9.1 10 3 10

−

−



    

 

                                  dλ     =  0.0243 A°  

                    

 This is known as Compton wavelength. 
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Case (iii)     When  φ = 180° , cos φ = -1 ,  
cm

h
d

0

2
=

 

                                 

                          dλ     =  0.0485 A° 

                    

                Hence  dλ has maximum value when φ = 180° 

 

Experimental verification of Compton effect 

 A monochromatic beam of x-rays of wavelength ‘λ’ is allowed 

to fall on a scattering material (a small carbon block C). A Bragg’s 

spectrometer ‘B’ which can move freely about an arc is used to find the 

wavelength of the scattered x-ray.The wavelength is measured for 

different values of scattering angle. 

 

 

 A graph between intensity and wavelength for various scattering 

angles is shown in the figure. 
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 The Compton shift is found to vary with the angle according to 

the relation  

dλ    =   (h/ m0c) (1 - cos φ).  

              From the graph, when φ = 90°, dλ = 0.0243 A° which agrees 

with Compton formula. Thus Compton effect is experimentally verified. 
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LEARNING ACTIVITY  

1. Discuss in detail about  characteristic of X ray spectrum. 

2. State and Explain Bragg’s law. 

3. What are the applications of Moseley’s law 

4. Explain the Powder crystal method in detail. 

5. What is Compton effect? Derive an expression for 

Compton shift.  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

 

In this chapter, we studied the  X ray spectra and its types also detail 

study about production, absorption and continues x rays. We detail 

studied about diffraction of xarys and various application including 

Compton effect. 
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Summary 

 

 

OVERVIEW 

 

In this chapter on `Atomic Physics’, we shall study the  photo electric 

effect and laws of photo electric emission .  We shall also study the 

Einstein’s photo electric equation and its verification. We shall study 

about various types of photo electric cells and its applications. 

 

LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 

 



• Photo electri effect and its applications 

• Einstein’s photo electric equation and its verification. 

• various types of photo electric cells and its applications 

 

4.1 Introduction 

 

Whenever light or electromagnetic radiations (such as X-rays, ultraviolet rays) 

fall on metal surface, it emits electrons. This process of emission of electrons 

from a metal plate, when illuminated by light of suitable wavelength, is called 

the photoelectric effect. The electrons emitted are known as the 

photoelectrons. In the case of alkali metals, photoelectric emission occurs even 

under the action of visible light. Zinc, cadmium etc. are sensitive to only 

ultraviolet light. 

 

4.2 Photo electric effect 

  

Photoelectric emission is the phenomena by which a good number of 

substances, chiefly metals, emit electrons under the influence of 

radiation such as γ rays, X-rays, ultraviolet and even visible light. This 

effect was discovered by Heinrich Hertz in 1887 while working with 

resonance electrical circuits. A year later, Hallwachs, Elster and Geitel 

investigated the phenomenon with a simple experimental arrangement. 
Hallwachs Experiment 

Hallwachs experimental set-up to study the photo electric effect is 

shown in Fig 7.1. It consists of an evacuated quartz bulb with two zinc 

plates cathode C and anode A. The plates are connected to a battery and 

a sensitive galvanometer. In the absence of any radiation incident on the 

plates, there is no flow of current and hence there is no deflection in the 

galvanometer. But, when an electro magnetic radiation like ultraviolet 

radiation is allowed to fall on the plate C which is connected to the 

negative terminal of the battery, a current begins to flow, indicated by 

the deflection in the galvanometer (G). But, when ultraviolet radiation is 

made to fall on A, there is no deflection in the galvanometer. These 

observations reveal that the particles emitted by the plate C due to the 



photoelectric effect are negatively charged. These particles were found 

to be electrons. The observed current known as the photoelectric current 

is due to the flow of electrons. 

 

Fig Photo electric effect 

After the study of photoelectric effect by Hallwachs, scientists 

J.J.Thomson, Lenard, Richardson, Compton did a series of experiments 

to study the relationship between photoelectric current, intensity of 

incident radiation, velocity and the kinetic energy of the photo electrons, 

and their dependence on the wave length of incident radiation used. 
 

Lenard’s method to determine e/m for photoelectrons 

  The apparatus used is shown in the figure.  It consists of a glass tube G 

which can be evacuated through the side tube T.  ultraviolet light passes 

through a quartz window W and falls on an aluminium cathode C 

enclosed in G.  an earthed metal screen A with a small central hole 

forms the anode.  The cathode (C) can be maintained at a desired 

potential, positive or negative relative to the anode A.  and  are 

small metal electrodes connected to electrometers  and . 

   When C is raised to a negative potential and illuminated, negatively 

charged particles are produced and accelerated towards the anode.  A 

few particles pass through the hole in A and proceed with uniform 

velocity to .  Their arrival at  is indicated by .  By applying a 

uniform magnetic field B(represented by the dotted circle) 

perpendicular to the plane of the figure and directed toward the reader, 

the photoelectrons can be deflected towards . Their arrival at  is 

indicated by the deflection they produce in . 



   Lenard first studied the relation between current and the potential 

applied to C.  when the cathode potential was several volts positive, the 

current was zero.  When Vwas +2 volts, there was a feeble current 

showing that a few particles possessed enough velocity to overcome the 

retrading potential of 2 volts. When the potential was further decreased, 

the current increased and reached a saturation value for -20 volts. Figure 

shows the variation of photoelectric current with cathode potential. 

   After this preliminary investigation, Lenard applied to C a negative 

potential V, very large compared to the potential of 2 volts. The velocity 

imparted by the accelerating potential is so large that the velocity of the 

particles in the act of emission  is negligible in comparison to it. Let V 

be the accelerating potential and v the velocity acquired by the 

photoelectrons. Then, 

                           m =eV                                 …………………….(1) 

 Where e is the charge and m the mass of the photoelectron. 

  Let R be the radius of the circular path described by the photoelectrons 

in the region of uniform magnetic field of strength B. 

Then    = Bev. 

 Therefore, v =                 ………………………(2) 

Substituting this value of v in equation (1) m(  = eV 

Therefore,   =                           ………………………………..(3) 

Knowing V, B and  R,  is calculated. Lenard found the value of 

 to be the same as that for electrons. This clearly shows that the 

photoparticles are nothing but electrons. 

 

 

 

4.3 Richardson and Compton experiment 

  The apparatus used by them is shown in the figure. The emitter of 

photoelectrons (C) is a small strip of the metal under study and is kept at the 

centre of a spherical glass bulb B.  B is silvered on the inner side and can be 



evacuated through the tube T.  the silver coating on the inside of the bulb 

serves as the anode A and is connected to an electrometer E which measures 

the photoelectric current. Monochromatic light L is made to pass through a 

quartz window W and fall on C. C can be maintained at any desired potential 

V relative to A and this potential can be read with a voltmeter. 

 

Effect of intensity of incident radiation on photo electric current 

Keeping the frequency of the incident radiation and the potential 

difference between the cathode and the anode at constant values, the 

intensity of incident radiation is varied. The corresponding photoelectric 

current is measured in the microammeter. 

 

Fig. Variation of photoelectric current with intensity of incident 

radiation. 

It is found that the photo electric current increases linearly with the 

intensity of incident radiation (Fig 7.2). Since the photoelectric current 

is directly proportional to the number of photoelectrons emitted per 

second, it implies that the number of photoelectrons emitted per second 

is proportional to the intensity of incident radiation. 

 

 

Effect of potential difference on the photoelectric current 

For a given metallic surface C, keeping the intensity (I1) and frequency 

of the incident radiation constant, the effect of potential difference 

between the plates on the photoelectric current can be studied. Fig 7.3 



shows the variation of photo electric current with the potential 

difference V between the two plates. When the positive potential of A is 

increased, the photoelectric current is also increased.  

 

Fig. Variation of photo electric current with potential difference 

However, if the positive potential is further increased such that it is 

large enough to collect all the photo electrons emitted from the plate C, 

the photoelectric current reaches a certain maximum value and this 

current is known as saturation current. If the potential of the plate A is 

made negative, the photocurrent does not immediately drop to zero but 

flows in the same direction as for positive potential. This shows that the 

photo electrons are emitted from the plate C with finite velocity. If the 

negative or retarding potential is further increased, the photo current 

decreases and finally becomes zero at a particular value. Thus, the 

minimum negative (retarding) potential given to the anode for which the 

photo electric current becomes zero is called the cut-off or stopping 

potential. 

If m is the mass of the photo electron emitted with a velocity vmax then 

the kinetic energy associated with it is ½ mv2
max. 

Since at the stopping potential Vo, the fastest electron is just prevented 

from reaching the plate A, workdone in bringing the fastest electron to 

rest = kinetic energy of the fastest electron. 

eVo = ½ mv2
max 



The above equation indicates that the stopping potential depends upon 

the velocity of the fastest electron. The experiment is repeated with the 

incident radiation of same frequency, but of higher intensities I2 and I3. 

It is found from the graph, the saturation currents are proportional to the 

intensities of the radiation. But, the stopping potential remains the same 

for all the intensities. Thus, for a given frequency of incident radiation, 

the stopping potential is independent of its intensity.  

Effect of frequency of incident radiation on stopping potential 

Keeping the photosensitive plate (C) and intensity of incident radiation 

a constant, the effect of frequency of the incident radiations on stopping 

potential is studied. Fig 7.4 shows the variation of the photo electric 

current with the applied potential difference V for three different 

frequencies. From the graph, it is found that higher the frequency of the 

incident radiation, higher is the value of stopping potential Vo. For 

frequencies ν3 > ν2 > ν1, the corresponding stopping potentials are 

in the same order (Vo )3 > (Vo )2 > (Vo )1. 

 

Fig. Variation of photoelectric current with applied potential difference 

for different frequency of incident radiation 

It is concluded from the graph that, the maximum kinetic energy of the 

photoelectrons varies linearly with the frequency of incident radiation 

but is independent of its intensity. If the frequency of the incident 

radiation is plotted against the corresponding stopping potential, a 

straight line is obtained as shown in Fig 7.5.  



 

Fig. Variation of stopping potential with frequency of incident 

radiation. 

From this graph, it is found that at a frequency νo, the value of the 

stopping potential is zero. This frequency is known as the threshold 

frequency for the photo metal used. The photoelectric effect occurs 

above this frequency and ceases below it. Therefore, threshold 

frequency is defined as the minimum frequency of incident radiation 

below which the photoelectric emission is not possible completely, 

however high the intensity of incident radiation may be. The threshold 

frequency is different for different metals. 

 

4.4 Laws of photoelectric emission 

The experimental observations on photoelectric effect may be 

summarized as follows, which are known as the fundamental laws of 

photoelectric emission. 

(i) For a given photo sensitive material, there is a minimum frequency 

called the threshold frequency, below which emission of photoelectrons 

stops completely, however great the intensity may be. 

(ii) For a given photosensitive material, the photo electric current is 

directly proportional to the intensity of the incident radiation, provided 

the frequency is greater than the threshold frequency. 



(iii) The photoelectric emission is an instantaneous process. i.e. there is 

no time lag between the incidence of radiation and the emission of 

photo electrons. 

(iv) The maximum kinetic energy of the photo electrons is directly 

proportional to the frequency of incident radiation, but is independent of 

its intensity. 

 

4.6 Einstein’s photoelectric equation 

In 1905, Albert Einstein, successfully applied quantum theory of 

radiation to photoelectric effect. 

According to Einstein, the emission of photo electron is the result of the 

interaction between a single photon of the incident radiation and an 

electron in the metal. When a photon of energy hν is incident on a 

metal surface, its energy is used up in two ways : 

(i) A part of the energy of the photon is used in extracting the electron 

from the surface of metal, since the electrons in the metal are bound to 

the nucleus. This energy W spent in releasing the photo electron is 

known as photoelectric work function of the metal. The work function 

of a photo metal is defined as the minimum amount of energy required 

to liberate an electron from the metal surface. 

(ii) The remaining energy of the photon is used to impart kinetic energy 

to the liberated electron. If m is the mass of an electron and v, its 

velocity then  

Energy of the incident photon = Work function + Kinetic energy of the 

electron 

hν = W +1/2 mv2     ...(1) 

If the electron does not lose energy by internal collisions, as it escapes 

from the metal, the entire energy (hν–W) will be exhibited as the 

kinetic energy of the electron. Thus, (hν–W) represents the maximum 

kinetic energy of the ejected photo electron. If vmax is the maximum 

velocity with which the photoelectron can be ejected, then  

hν = W +1/2 mv2
max     …(2) 

This equation is known as Einstein’s photoelectric equation.  



When the frequency (ν) of the incident radiation is equal to the 

threshold frequency (νo) of the metal surface, kinetic energy of the 

electron is zero. Then equation (2) becomes, 

hνo = W      …(3) 

Substituting the value of W in equation (2) we get, 

hν - hνo =1/2 mv2
max (or) h(ν - νo) =1/2 mv2

max 

This is another form of Einstein’s photoelectric equation. 

verification of Einstein’s photoelectric equation 

Einstein’s photoelectric equation is, ½ mv2 = h(ν − νo)  

  …(1) 

If Vo is the stopping potential and e, the electronic charge, then 

½ mv2 = eVo         

 …(2) 

From equations (1) and (2), 

eVo = h (ν –νo) 

or 

 

This is an equation of a straight line. Millikan verified the above 

equation experimentally and found that it is in harmony with the 

observed facts. 

Experimental verification of Einstein’s Photoelectric equation –

Millikan’s experiment. 

Theory. Milikan’s experiment is based on what is k now as the 

“stopping potential “. The stopping potential is the necessary retarding 

potential difference required in order to just half the most energetic 

photoelectron emitted. 

= m =hv-ϕ. 

Let V be the P.D. which is applied between the emitter and a collecting 

electrode in order to prevent the photoelectron from just leaving the 



emitter, the emitter being maintained at a positive potential with respect 

to the collector. Then, eV= m .         

Therefore, eV=hv-    

or V= v -                                 …………………………..(1) 

 is constant for a given metal; h and e are also constants. 

Hence, equation (1) represents a straight ling. V is measured for 

different values of v. A graph is then plotted between the stopping 

potential (V) taken along the Y-axis and the frequency of light (v) taken 

along the X-axis. The graph is a straight line. The slope of the straight 

line 

              =  

Therefore,  

h = e            ……………………………………………(2) 

Hence the value of h.(Plank’s constant) can be calculated. The intercept 

on the X-axis gives the threshold frequency  for the given emitter. 

From this, photoelectric work function =  =h  can be calculated. 

 

Experiment : Milikan’s apparatus is shown in the figure. Alkali metals 

are employed as emitters, since they readily exhibit photoelectric 

emission even with visible light. Cylindrical blocks (C) of sodium, 

postassium or lithium are mounted on a spindle S at the centre of the 

glass flask G. the flask is evacuated to a very high vacuum to free the 

metals from all absorbed gases and to prevent their oxidation. The 

spindle can be rotated from outside by an electromagnet. As each metal 

block passes by the adjustable sharp edge K, a thin layer of it is 

removed, thus exposing a fresh surface of the metal to the irradiating 

light entering the flask through a quartz window W. monochromatic 

light provided by a spectroscope is used to illuminate the fresh metal 

surfaces. The photoeelctrons are collected by a Faraday cylinder F. The 

Faraday cylinder is made of copper oxide which is not photosensitive. 



The photocurrent is measured by an electrometer connected to the 

Faraday cylinder. 

 

  The stopping potential of the liberated photoelectrons is measured by 

raising the emitter surface to a positive potential, just sufficient to 

prevent any of the electrons from reaching the collector (F).  The 

stopping potential is the positive potential applied to the emitter, which 

corresponds to zero current in the electrometer. The stopping potential 

(V) is determined for different wavelengths of the incident light. The 

value of V should be corrected for any contact potential between the 

metal (C) and Faraday cylinder (F). On plotting V against v, we get a 

straight line. Measuring the slope of the straight line, the value of  is 

obtained. Then substituting the known value of e, h is calculated. The 

value of h calculated in this way agrees fairly well with the value 

obtained by other methods. Thus the Einstein’s equation can be verified 

experimentally. 

 

 

4.6 Photoelectric cells 

   Photoelectric cell is an arrangement to convert light energy into 

electrical energy. There are three types of photocells, photoemissive, 

photovoltaic and photoconductive. 

(i) Photo-emissive Cell. This consists of a glass or quartz bubl(B) 

according as it is to be used with visible or ultraviolet light. C is the 

silver cathode in the form of a semi-cylinderical plate. The anode (A) is 

a rod mounted vertically at the centre of the bulb and parallel to its axis. 

A positive potential of about 100 volts is applied to the anode, the 

negative being connected to the cathode through a galvanometer G. 

when light falls on the cathode C, electrons are ejected from the cathode 



. A small current flows through the cell and can be measured by the 

galvanometer. The photoemissive cell is used for reproduction of sound 

from photo-films. 

(ii) Photo-voltaic cell. It consist of a layer of semiconductor material 

spread over a metallic surface by heat treatment. In one type of the 

photovoltaic cell, the metal plate is made of copper and the 

semiconductor is cuprous oxide (C O). On the other side of the 

semiconductor, there is a very thin layer of a translucent deposit which 

allows the semiconductor to be illuminated by radiations. Light falling 

on the surface film (of gold or silver) penetrates into it and ejects 

photoelectrons from the semiconductor layer. These electrons travel in a 

direction opposite to the direction of incident light. The conventional 

current, therefore, flows in the direction of the incident light. For small 

values of the resistance of the galvanometer, the current is directly 

proportional to the intensity of light. No external battery is required to 

operate a photovoltaic cell as the cell itself generates an e.m.f. 

(iii) Photoconductive Cell: These cells are based on the principle that 

the electrical resistance of a semiconductor material, like selenium, 

decreases with the increase of intensity of radiation incident upon it and 

conductivity is increased. A film of selenium is deposited on one side of 

an iron plate and a P.D. of 100 volts is applied between iron and 

selenium from an external battery. A galvanometer is included in the 

electric circuit. When a beam of light falls on the selenium film, a 

delfection will be observed in the galvanometer. As the intensity of the 

incident light is varied, the resistance of selenium also varies 

accordingly and the current in the circuit undergoes corresponding 

variations. The solar battery consists of several thousands 

photoconductive cells, which produce several kilowatt power. 

 

4.7 Applications of Photoelectric cells: 

 

 (i) Exposure meters in photography. An exposure meter is a device to 

calculate the correct time of exposure. The photoelectric cell in the 



instrument produces a current proportional to the light falling on it. The 

current operates a galvanometer, the scale of which is calibrated to read 

the time of exposure. 

(ii) Photo-multiplier: It is based on the principle of secondary emission. 

When light strikes the surface of photosensitive metal plate C, it causes 

the ejection of  photoelectrons from it. These electrons are then attraced 

to a metal surface called a dynode, by setting a P.D.  between the 

cathode C and the dynode 1.  High energy electrons striking a metal 

surface can cause the ejection of one or more secondary electrons from 

the surface. Suppose that a photoelectron striking dynode 1 produces x 

electrons by secondary emission. These electrons are then directed 

towards dynode 2 by making its potential higher than that of dynode 1. 

Suppose x electrons are again ejected by secondary emission for each 

incident electron. Then, for each electron emitted by the photosensitive 

plate, there are now  electrons and so on. If there are several dynode, 

each at a potential higher than the preceding one, an avalanche of 

electrons reaches the collector plate A. A strong current then flows in 

the outer circuit. This device is used to amplify very weak light signals. 

(iii) Photoelectric cells are used to compare the illuminating powers of 

two light sources. They are also used in the measurement of the 

intensity of illumination of a light source. 

(iv) Sound reproduction in films. The film is provided with a sound 

track at on edge. Light passing through the sound track of the film falls 

on a photocell. Current is produced, which fluctuates correspondingly 

with the intensity of sound recorded in the sound track. The current 

impulses are converted to sound by speakers. 

(v) Automatic operation of street lights. A photoelectric cell, located in 

a street light circuit, switches off the street light when sunlight is 

incident on the cell. When sunlight fades and it becomes dark, the 

photoelectric cell switches on the street lights. 



LEARNING ACTIVITY  

1. What is Photo electric effect. 

2. State Laws of photo electric emission. 

3. What are the applications of Photo electric cells 

4. Derive an expression for Einstein’s Photo electric equation.  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

 

In this chapter, we studied the Photoelectric effect and its applications. 

Also detail studied about  laws of photo electric emission and photo 

electric cells and its applications.. 
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OVERVIEW 

 

In this Chapter the general static properties of crystals, as well as 

possibilities to observe crystal structures, are reviewed. We emphasize 

basic principles of the crystal structure description. More detailed 

information can be obtained. 

 

LEARNING OBJECTIVES 

 

After completing this Unit, you should be able to: 

 

• Classification of solids 

• Seven types of crystal structure and its types. 

• various types of defects in crystals 



 

5.1 Introduction 

 

Crystal Physics’ or ‘Crystallography’ is a branch of physics that deals 

with the study of all possible types of crystals and the physical 

properties of crystalline solids by the determination of their actual 

structure by using X-rays,neutron beams and electron beams. Solids 

can broadly be classified into two types based on the arrangement of 

units of matter. The units of matter may be atoms, molecules or ions.  

 

5.2 Types of Solids 

  

They are, 

(i) Crystalline solids and (ii) Non-crystalline (or) Amorphous solids 

CRYSTALLINE SOLIDS 

A crystalline material can either be a single (mono) crystal or a 

polycrystal. A single crystal consists of only one crystal, whereas the 

polycrystalline material consists of many crystals separated by well-

defined boundaries. Examples Metallic crystals – Cu, Ag, Al, Mg etc, 

Nonmetallic crystals – Carbon, Silicon, Germanium 

NON CRYSTALLINE SOLIDS 

In amorphous solids, particles are arranged in an orderly manner. They 

are randomly distributed. They do not have directional properties and 

so they are called as `isotropic’ substances. They have wide range of 

melting point and do not possess a regular shape. Examples: Glass, 

Plastics, Rubber etc. 

SINGLE CRYSTALS 

Single crystals have a periodic atomic structure across its whole 

volume. At long range length scales, each atom is related to every other 

equivalent atom in the structure by translational or rotational symmetry 

 

 

 



POLYCRYSTALLINE SOLIDS 

Polycrystalline materials are made up of an aggregate of many small 

single crystals. They have a high degree of order over many atomic or 

molecular dimensions. Grains are separated by grain boundaries. The 

atomic order can vary from one domain to the next. The grains are 

usually 100 nm - 100 microns in diameter. Poly crystals with grains 

less than 10 nm in diameter are nanocrystalline 

 

5.3  Space Lattice 

 

A lattice is a regular and periodic arrangement of points in three 

dimension.It is defined as an infinite array of points in three dimension 

in which every point has surroundings identical to that of every other 

point in the array. The Space lattice is otherwise called the Crystal 

lattice 

 

 

BASIS 

A crystal structure is formed by associating every lattice point with an 

unit assembly of atoms or molecules identical in composition, 

arrangement and orientation.  
This unit assembly is called the `basis’. When the basis is repeated with 

correct periodicity in all directions, it gives the actual crystal structure. 

The crystal structure is real, while the lattice is imaginary. 

 



UNIT CELL 

A unit cell is defined as a fundamental building block of a crystal 

structure, which can generate the complete crystal by repeating its own 

dimensions in various directions. 

LATTICE PARAMETERS 

The three interfacial angles and their corresponding intercepts are 

essential. These six parameters are said to be lattice parameters. 

Similarly the angles between X and Y and Z axes are denoted by α, β 

and γ respectively as shown in the above figure. These angles α, β 

and γ are called as interaxial angles or interfacial angles. 

   

5.4 Crystal systems 

The seven systems are, 

Cubic 

Tetragonal 

Orthorhombic 

Trigonal (Rhombohedral) 

Hexagonal 

Monoclinic and 

Triclinic 

Primitive lattice: It has lattice points only at the corners of the unit cell. 

Body centred lattice: It has lattice points at the corners as well as at the 

body centre of the unit cell. 

Face centred lattice :It has lattice points at the corners as well as at the 

face centres of the unit cell. 

Base centred lattice:It has lattice points at the corners as well as at the 

top and bottom base centres of the unit cell. 

 

 

 

 

 

 



THE SEVEN CRYSTAL SYSTEMS WITH ITS LATTICE 

PARAMETERS. 

 

S.No 
Crystal 

Systems 

Lattice 

Parameters 

Types 

of 

lattice 

Examples 

1 Cubic 

a = b = c 

α = β = γ 

 

P 

I 

F 

Po 

Na, Fe 

Ag, Au, Cu 

2 Tetragonal 

a = b ≠ c 

α = β = γ = 90° 

 

P 

I 

 

TiO2 

KH2PO4 

 

3 Orthohombic 

a ≠ b ≠ c 

α = β = γ = 90° 

 

P 

I 

F 

C 

C15H20O2 

BaSO4 

KSO4 

α - s 

 

4 Monoclinic 
a ≠ b ≠ c 

α = β = 90° γ ≠90° 

P 

C 

CaSO4 2H2O 

K2MgSO4 

6H2O 

5 Triclinic 
a ≠ b ≠ c 

α ≠ β ≠  γ ≠90° 
P K2Cr2 O7 

6 Trigonal 

a = b = c 

α ≠ β ≠  γ ≠90° 

( But less than 

120°) 

P Calcite 

7 Hexagonal 

a = b ≠ c 

α = β = 90°  γ = 

120° 

P Quartz 

 

  

 

 



BRAVIAS LATTICES 

It is found that the point symmetry of crystal lattice can lead to 14 

different types of lattices in three dimensional spaces. These 14 

different types of arrangement are called Bravais lattices. Each type of 

this arrangement can be represented by a unit cell. The Bravais lattices 

formed by unit cells are marked by the following symbols: 

                      Primitive Lattice           -   P 

                      Body Cenetred Lattice  -   I 

                      Face Cenetred Lattice   -   F 

                      Base Cenetred Lattice   -  C 

                  

  The 14 Bravais lattices are illustrated in the fig.  

The occurrences of the 14 Bravais lattices are given in the following 

table. 

            

S.No. System 
No.of 

Bravais 

lattices 

Bravais Lattice 

1. Cubic 3 
Simple (or) Primitive, 

Face centered and 

Bodycentered 

2. Monoclinic 2 
Simple (or) Primitive, 

Base Centered 

3. Orthorhombic 4 

Simple (or) Primitive, 

Base Centered, Face 

centered and Body 

centered 

4. Tetragonal 2 
Simple (or) Primitive 

and Body Centered 

5. Hexagonal 1 Simple (or) Primitive 

6. 
Trigonal 

(Rhombohedral) 
1 Simple (or) Primitive 

7. Triclinic 1 Simple (or) Primitive 

 Total 14  



 

 

               

 

 

5.5  Miller Indicies 

A set of three numbers which is used to designate a plane in a crystal is 

known as Miller indices. 

 

Steps for finding Miller indices 

The steps in determining the Miller indices of a plane are illustrated 

below. 

Let us consider a plane ABC which cuts 3 units along the x – axis, 1 

unit along the y – axis and 2 units along the z – axis.   

 

 

 

 



 

 

 

   

Step 1 

Find the intercepts made by the plane ABC along the three axes and 

express the intercepts interms of multiples of axial lengths. i.e., 

                                  

OA : OB : OC = pa : qb : rc 

                     

From fig. p = 3, q = 1, and r = 2 

 

 The intercepts are 3a : 1b : 2c 

Step 2 

Find the coefficients of the intercepts i.e., 3, 1, 2 

 

Step 3 

Find the reciprocal of these numbers 

1 1 1 1 1 1
: : . ., : :

3 1 2
i e

p q r
 

      



Step 4 

Convert these reciprocals into whole numbers by multiplying each and 

every reciprocal with their least common multiplier (LCM). 

 

Since 6 is the LCM in this case, we get  

1
6

3


  

1
6

1


  

1
6

2


 

                                                      We have    =    2          6            3 

Step 5 

Enclose these numbers in a bracket like this ( ) i.e., (2 6 3). This 

represents the indices of the given plane and is called the Miller indices 

of the plane. 

 

d spacing in cubic lattice 

 

 



Let us consider the plane ABC. The plane ABC belongs to a family of 

planes whose Miller indices are (h k l). Let ON = d i.e., the 

perpendicular distance to the plane from the origin. Let OA, OB, and 

OC be the intercepts made by the plane on X, Y and Z axis respectively. 

Let α, β, γ represents the angle between ON and X, Y and Z axis 

respectively.  

                        

 

Then the intercepts of the plane on the three axes are,  

 

                               

; ;
a a a

OA OB OC
h k l

= = =
   

Where ‘a’ is the length of the cube edge. 

 

From Δ ONA, 

cos
ON d dh

OA a h a
 = = =

 

 

From Δ ONB, 

cos
ON d dk

OB a k a
 = = =

 

 

From Δ ONC, 

cos
ON d dl

OC a l a
 = = =

 

                   

From the law of direction cosines,    cos2α + cos2β + cos2γ = 1. 

 



                              

( )

2 2 2

2
2 2 2

2

2
2

2 2 2

2 2 2

1

1

dh dk dl

a a a

d
h k l

a

a
d

h k l

a
d

h k l

     
 + + =     

     

+ + =

=
+ +

 =
+ +  

 

 

5.6 Crystal Structure 

   Simple Cubic crystal structure (SC) 

 

1. Number of atoms per unit cell 

 

The diagram shows the unit cell of SC structure. In this structure the 

atoms are only at the corners of the cube. 

 

 

                                                    1/8 1/8  

                                       1/8 

 

 

 

 1/8 

 

                                    1/8 a 1/8 

 

To form full crystal structure each corner atom is shared by 8 adjoining 

unit cells. Hence 1/8th part of an atom is present in every corner of the 

cube. Since there are eight corners,  

                       1/8 

 

 

          1/8 

 



 total no of atoms 

1
8 1

8
=  =

 atom.  

 

 

2. Co-ordination Number 

Consider one corner atom in a SC structure. This atom is surrounded by 

4 nearest neighboring atoms in the same plane and one vertically above 

the atom and one exactly below the atom.  

Hence the coordination number is 4 + 1 + 1 = 6. 

 

 

 

3. Atomic Radius 

 

Each corner atom touches each other along the edges of the cube. If ‘r’ 

is the atomic radius and ‘a’ is the side of the cube, then from the fig. 

 

a = 2r 

r = a/2 

 

 

 

 

 

 



4. Packing Factor 

                  

 

Volume of all the atoms in the unit cell(v)
Packing Factor

Volume of the unit cell(V)
=

 

                      

number of atoms present in a unit cell Volume of one atom
Packing Factor

Volume of the unit cell(V)


=

  

No. of atoms present in the unit cell (SC) = 1 

Volume of one atom =  

34

3
r

 

          Volume of unit cell = a3 (where ‘a’ is the side of the cube) 

                                       

                                    PF =

3

3

4
1

3
r

a



 

 

We know a = 2r. Substitute the value of ‘a’ in the above equation,     we 

get                  

                                   PF =

3

3

4

3 0.5236
6(2 )

r

r




= =

 

Thus, packing fraction is about 52% and hence this structure is a loosely    

packed one. 

 

Example: Polonium 

 

 

 



Body Centred cubic structure (BCC) 

1. Number of atoms per unit cell 

 

 

The diagram shows the unit cell of BCC structure. In this structure the 

atoms are at the corners of the cube and there is one atom at the centre 

of the cube. To form full crystal structure each corner atom is shared by 

8 adjoining unit cells. Hence 1/8th part of an atom is present in every 

corner of the cube. Therefore, 

Contribution of corner atoms           

1
8 1

8
=  =

atom. 

Contribution of centre atoms            = 

1
6 3

2
 =

atoms. 

Total number of atoms / unit cell      = 1+3 = 4 atoms. 

 

2. Co-ordination Number 

 

Consider the body centre atom in a BCC structure. This atom is 

surrounded by the corner atoms only. So the nearest neighbor for a body 

centre atom is the 8 corner atoms. 

Hence the coordination number = 8 

 

3. Atomic Radius 

In this structure the unit cell has 8 atoms at the corners of the cube and 1 

atom at the centre of the cube. Here the corner atoms do not touch each 



other, but each corner atom touches the central atom. If ‘r’ is the atomic 

radius and ‘a’ is the side of the cube, then from the fig. 

 

 

 

In triangle ∆ADC, 

                                       AD2   = AC2 + DC2 

                                                = AB2 + BA2 + DC2     (from ∆ABC) 

                                       (4r) 2 = a2 + a2 + a2  

                                        16r2 = 3 a2  



                                           

2
2 3

16

3
atomic radius 

4

a
r

r a

=

 =
   

 

 

 4. Packing Factor 

                  

      

Volume of all the atoms in the unit cell(v)
Packing Factor

Volume of the unit cell(V)
=

 

             

 

No. of atoms present in the unit cell (BCC)  = 2 

                                     Volume of one atom =  

34

3
r

 

                                       Volume of unit cell = a3  

                                                                    (where ‘a’ is the side of the 

cube) 

                                                                PF =

3

3

4
2

3
r

a



 

 We know

3

4
r a=

  

Substitute the value of ‘r’ in the above equation, we get 

                                   PF =

3

3

8 3

3 4 3
0.68

8

a

a





 
  
 

= =
 

Thus, packing fraction is about 68% and hence this structure is not a 

closely   packed one. 



 

Examples: Tungsten, sodium, iron, and chromium. 

 

Face Centred Cubic Structure (FCC) 

1. Number of atoms per unit cell 

                                     

The diagram shows the unit cell of FCC structure. In this structure the 

atoms are at the corners of the cube and there are six atoms at the face 

centers of the cube. To form full crystal structure each corner atom is 

shared by 8 adjoining unit cells. Hence 1/8th part of an atom is present in 

every corner of the cube. Along with this each face centered atom is 

shared by 2 adjoining unit cells. Therefore, 

                Contribution of corner atoms             

1
8 1

8
=  =

atom. 

                Contribution of face centered atoms   

1
6 3

2
=  =

atoms. 

                Total number of atoms / unit cell        = 1+3 = 4 atoms. 

 

2. Co-ordination Number 

In this structure the nearest neighbors of any corner atom are the face 

centered atoms of the surrounding unit cells. Any corners atom has four 

such atoms in its own plane, four in the plane above it and four in the 

plane below it. 

Hence the coordination number = 4 + 4 + 4 =12 



 

3. Atomic Radius 

                   

 

 

 

 

  In Δ BCD,  

                         BD2  = BC2 + DC2 

                         (4r)2   = a2 + a2 

                         16r2 = 2 a2 

                                

2
2 2

16

2
atomic radius 

4

a
r

r a

=

 =
 

4. Packing Factor 

           

Volume of all the atoms in the unit cell(v)
Packing Factor

Volume of the unit cell(V)
=

 

           

 No. of atoms present in the unit cell (FCC) = 4 



                                     Volume of one atom =  

34

3
r

 

                                      Volume of unit cell = a3  

                                                (where ‘a’ is the side of the cube) 

 PF = 

3

3

4
4

3
r

a



 

          We know

4

2

r
a =

. Substitute the value of ‘a’ in the above 

equation, we get 

                      

                                   PF =

3

3

16

23 0.74
64

2

r

r



= =
 
 
 

 

 

Thus, packing fraction is about 74% and hence this structure has high 

packing fraction.  

Examples: copper, aluminum, and silver 

 

 

 

 

 

 

 

 

 

 



Hexagonal Closed Packed Structure (HCP) 

1. Number of atoms per unit cell

The diagram shows the unit cell of HCP structure. In this 

structure there are three layers of atoms in a unit cell. The bottom layer 

has six corner atom and one face centered atom. Similarly the top layer 

has same atomic arrangement as the bottom layer. At c/2 distance from 

the bottom layer there is a middle layer containing three atoms. 

Atoms at the top layer    =   7 

Atoms at the bottom layer  =   7 

          Contribution of corner atoms     

1
6 1

6
=  =

atom.   

Contribution of base atoms    

1 1
1

2 2
=  =

atom  

     Atoms at the centre of the unit cell  =   3 full atoms 

 Total no. of atoms in an unit cell   = top layer + Bottom layer + 

Centre 

1 1
1 1 3

2 2

   
= + + + +   

   

a 

2

C

C 



3 3
Total no. of atoms in an unit cell 3 6atoms

2 2
= + + =

2. Co-ordination Number

Consider the face centered atom in the bottom layer. It is 

surrounded by six corner atoms. Above the face centered atom there is a 

layer containing 3 atoms. Similarly below the face centered atom there 

is a layer containing 3 atoms. So the number of atoms surrounding a 

given particular atom is 6 + 3 + 3 =12. 

Hence the coordination number = 12.  

3. Atomic Radius

In this structure the atoms touch each other along the edges of hexagon 

and the face centered atom touches all the corner atoms. If ‘r’ radius of 

atom and ‘a’ is the side of the hexagon then we can write, 

2r = a (or) r = a/2 

4. Packing Factor

For calculating packing fraction first we have to calculate (c/a) ratio. Let 

‘C’ be the   height of the unit cell and ‘a ‘be the Distance between two 

atoms. 

a

   r r 



 

 

  

In triangle ABY,    Cos 30o =      
AB

AY
 

                 AY    =     AB Cos 30o 

                 AY    =    AB 
2

3
         

       AY    =     a   
2

3
             --------- (1) 

 

In triangle AXZ, 

                    (AZ) 2    =    (AX) 2 + (XZ) 2    --------- (2) 

             a2      =    (AX) 2 + 

2

2







 C

 

              a2      =    (AX) 2 +    









4

2C

   --------- (3) 



              But     AX     =   3

2

 AY     (from the figure) 

               AX     =   3

2

  a 2

3

 

                        AX      = 3

a

                    ---------- (4) 

Substitute equation (4) in equation (3) 

   a2      =  

2

3







 a

 + 










4

2C

 

   a2     = 3

2a

  + 










4

2C

 

  










4

2C

          =    a2    -   










3

2a

 

  










4

2C

        =     a2    

















−

3

1
1

 

       
2

2

a

C

      =     3

8

 

 

 

        a

C

     =    3

8

  or       a

C

     =    1.63            - ( 5 ) 

 

 

 

 

 

 



4. Packing Factor 

                   

Volume of all the atoms in the unit cell(v)
Packing Factor

Volume of the unit cell(V)
=

 

  No. of atoms present in the unit cell (HCP) = 6 

                             Volume of one atom =  

34

3
r

 

                               

                              Volume of unit cell = Area of the base x height 

                                                              = 6 X area of triangle ABO X 

height  

                                                                 of unit cell (bottom area of 

hexagon 

    is divided into six triangles) 

              

        V   = 6 x  2

1

 x BO x AY x height of unit cell 

              = 6 x  2

1

 x a x a 2

3

 x C (BO = a,AY= a 2

3

&height of unit 

cell = C) 

Volume (V) of the HCP unit cell   =   3a2  2

3

    C 

  Packing factor (APF)           =     

C

r

2

3
3a

3

4
6

2

3

 



             Put r = a / 2,        =   

C

a

2

3
3a

23

4
6

2

3









 

 

                                           PF         =   2

33

8

8

2

3

Ca

a

 

But   C =   a 3

8

 ,            PF        =   
3

833

2

2

3

aa

a

     

                 PF        =     83

2

                   

    

                

   PF       =  0.74   =   74% 

             

Thus   packing factor for HCP is 74%. Hence it is closely packed 

structure. 

Examples:    Zinc, Cadmium, Zirconium, Magnesium, Titanium,      

                     Berylium 

 

Sodium Chloride Structure (NaCl) 

  

 Sodium chloride is an ionic crystal. It has FCC structure with a basis 

of one Na+ ion and one Cl- ion in an alternate fashion. Most of the alkali 

halides and sulphides exhibit this type of structure. 

 



                           

 

Structure Composition 

              

The Cl- ions are situated at the corners as well as at the centers of the 

faces of the cube. The Na+ ions are situated exactly at the midpoint of 

the axial length of the unit cell along each axis. Thus, NaCl crystal can 

be thought to be composed of two FCC sub lattices. One of Cl- ion 

having the origin of (0, 0, 0) and the other of Na+ ion having the origin 

(1/2, 0, 0). 

               

Let us discuss the important parameters of the NaCl crystal. 

 

Number of Atoms per Unit Cell 

In this NaCl structure, we have two types of ions namely Na+ and Cl-. 

Let us find the number of sodium ions and chlorine ions separately. 

        

(i) Number of Na+ ions per unit cell 

Here we have two types of   Na+  ions, namely, 

                                          (a) Midpoint   Na+ ions 

                                          (b) Body centered Na+ ion 

(a) Each Na+ ions situated at the mid point of the axial length is shared 

by 4 unit cells.  Similarly, we have 12 midpoint Na+ ions. 

Number of midpoint Na+ ions per unit cell   

1
12 3

4
=  =

ions. 



 

(b) Each body centered Na+ ion is shared by that particular unit cell 

alone. 

Number of body centered Na+ ion per unit cell 

1
1 1

1
=  =

ion. 

Total number of Na+ ions per unit cell    = 3 + 1 = 4 ions. 

 

(ii) Number of Cl- ions per unit cell 

Here, we have two types of Cl- ion namely, 

                                         (a) Corner Cl- ions 

                                         (b) Face centered Cl-ions 

(a) Each corner Cl- ions is shared by 8 unit cells. Similarly, we have 8 

such corner ions. 

 Number of corner Cl- ions per unit cell        

1
8 1

8
=  =

ion. 

 (b) Each face centered Cl- ions is shared by 2 unit cells. 

Similarly, we have 6 face centered Cl- ions. 

 Number of face centered Cl- ions per unit cell 

1
6 3

2
=  =

ions. 

Total number of Cl- ions per unit cell             = 3 + 1 = 4 ions. 

 

Thus, there are 4 Na+ ions and 4 Cl- ions per unit cell in a NaCl 

crystal. 

 

Coordination number 

Each Cl- ions has 6 Na+ ions as nearest neighbors. Similarly, each Na+ 

ion has 6 Cl- ions as nearest neighbors. Hence, the coordination number 

of NAACO for opposite kind of ions is 6. 

 

 



Atomic radius 

The distance between any two nearest neighbors is a/2. 

 

Examples: KCl, KBr, CaO, etc.   

 

Diamond structure 

                                                                    

 

 Diamond structure is formed due to the combination of two 

interpenetrating FCC sub lattices, having the origin (0, 0, 0) and  

(1/4, 1/4, 1/4) along the body diagonal. 

Let us discuss the important parameters of the diamond structure. 

 

Number of Atoms per Unit Cell 

In diamond we have 3 types of atoms viz., 

  (i) Corner atoms, represented by ‘c 

(ii) Face centered atoms represented by ‘F’ 

(iii) Four atoms present inside the unit cell represented  

       as 1, 2, 3, and 4. 

 

(i) Number of corner atoms per unit cell 

Each corner atom is shared by 8 unit cells. Similarly, we have 8 corners 

atoms in an unit cell.  

 Number of corner atoms per unit cell        

1
8 1

8
=  =

atom. 

(ii) Number of face centered atoms per unit cell 



 Each face centered atom is shared by 2 unit cell. Similarly, we 

have 6 face centered atoms. 

 Number of face centered atoms per unit cell  

1
6 3

2
=  =

 

atoms. 

 

(iii) Number of atoms inside the unit cell 

 Inside the unit cell we have 4 atoms, represented by 1, 2, 3, 4 

which is shared by that particular unit cell alone. 

 

     Total number of atoms per unit cell    = 1 + 3 + 4 = 8 

atoms. 

 

Atomic radius 

   

           

                

Here, the corner atoms do not have contact with each other and the face 

centered atoms also do not have contact with the corner atoms. But both 

the face centered atoms and the corner atoms has contact with the 4 

atoms (1, 2, 3, 4) situated inside the unit cell. 

 

From the diagram, 

                                             XY2 = XZ2 + ZY2 

                                                     = XT2 + TZ2 + ZY2  

Z T 

Y X 

4
a

 4
a

 

4
a

 



                                            

2 2 2

2

2
2

XY
4 4 4

3
XY

16

a a a

a

     
= + +     

     

=
 

 

Since XY = 2r, we can write, 

                                            

( )
2

2

2
2

2
2

3
2

16

3
4

16

3

64

3

8

a
r

a
r

a
r

a
r

=

=

=

=
  

 

Coordination number 

 

Coordination number of diamond is 4. 

 

Packing factor 

                        

Volume of all the atoms in the unit cell(v)
Packing Factor

Volume of the unit cell(V)
=

 

           

 No. of atoms present in the unit cell  = 8 

                          Volume of one atom =  

34

3
r

 

                             Volume of unit cell = a3 (where ‘a’ is the side of the 

cube) 



                                                         PF =

3

3

4
8

3
r

a



 

     We know 

8

3

r
a =

, so the above equation becomes, 

                                                          PF 

=

3

3

32 3 3
0.34 34%

3(8 )

r

r


= =

   

 

Since the packing factor is very low, it is termed as diamond has very 

loosely packed structure. 

 

Zinc Sulphide Structure 

 

           

 

The zinc sulphide structure has a similar structure to that of a diamond. 

We know that the diamond structure is made by carbon atoms (corner + 

face centered + 4 atoms inside the unit cell). In the diamond structure if 

the corner and face centered atoms are replaced by sulphur (S-) atoms 

and the four atoms present inside the unit cell are replaced by zinc (Zn+) 

atoms, then we get zinc sulphide structure. It also has the coordination 

number as 4. 

 

 



 Graphite Structure 

The above diagram shows the graphite structure. In the case of graphite, 

carbon atoms are arranged in regular hexagons in flat parallel layers 

such that each atom is linked by the neighbouring atoms.  

However there is no strong bonding between different layers which are 

therefore easily separable from each other. This is the cause of softness 

and lubricating action of graphite.  

 

                   

 

Meanwhile in each hexagonal layer, the carbon atoms are united by 

covalent bonds or by metallic bonds by loosing one valence electron. 

Due to the presence of metallic bonds, the graphite acts as a good 

electrical conductor. 

The carbon atoms are arranged in layer or sheet molecular structure. 

Graphite is formed when carbon atoms use only three of their possible 

covalent bonds. Thus they leave one valence electron per atom and that 

electro helps to form metallic type bond which holds the sheets together 

with a spacing of about 3.4 Aº. But the carbon atoms in the layer are 

covalent bonded and spacing between the atoms in the layer is about 

1.42 Aº. 

 



 

POLYMORPHISM AND ALLOTROPY. 

 

Polymorphism 

 

Definition 

A substance that can exist in two or more forms in the same state is 

called polymorphism. (or)  The ability of a material to have more than 

one structure is called polymorphism.  

 

 

Explanation 

Mercury II iodide can be found in either red or yellow form. The two 

types of crystal are polymorphs. So, Mercury II iodide exhibits 

polymorphism. 

The red form is energetically stable below 126ºC; the yellow form is 

energetically stable above 126 ºC. At 126 ºC the two forms can change 

into one another. This temperature is the transition temperature. 

 

Examples  

 

S.No. Substances Form – I Form – II 
Transition 

temperature 

1. 
MercuryII 

iodide 

HgI2 (s) 

Red 

HgI2 (s) 

yellow 
126 ºC 

2. 
Ammonium 

Chloride 

NH4Cl (s) 

Cesium 

Chloride 

structure 

NH4Cl (s) 

Sodium 

Chloride 

structure 

184 ºC 

 

 

 

 



 

 

Allotropy 

 

Definition 

 

An element that can exist in two or more forms in the same state is 

called allotropy. (or) If the change in structure is reversible, then the 

polymorphic change is known as allotropy. 

 

Explanation 

Sulphur has two allotropes, called rhombic and monoclinic sulphur. 

They can be distinguished by the shape of their crystals or by measuring 

their densities. 

 

Rhombic sulphur is energetically stable below 95.5ºC and monoclinic 

sulphur is energetically stable above this temperature. Therefore sulphur 

is an element that shows enantiotropy.  

 

  

 

Examples  

                   

S.No. Element Form – I Form – II 
Transition 

temperature 

1. Sulphur S8(s) rhombic 
S8(s) 

monoclinic 
95.5 ºC 

2. Carbon 
C (s) graphite 

 

Cl (s) 

diamond 

 

- 

3. Tin 
Stable Sn (s) 

grey 

Metastable Sn 

(s) white 
13.2 ºC 

  



 

Crystal defects 

 

In an ideal crystal, the atomic arrangement is perfectly regular and 

continuous throughout. But real crystals are never perfect; lattice 

distortion and various imperfections, irregularities or defects generally 

present in them. The mechanical, electrical and magnetic properties of 

engineering crystalline solids, particularly metals and alloys, are 

affected by the imperfections in the crystals.   

 

If atoms in the solid are not arranged in a perfectly regular manner, 

it is called defects in crystals. 

 

The various types of structural imperfections or defects in crystals are 

classified as follows: 

1. Point defects (or) Zero dimensional defects 

a. Vacancies 

  i. Schottky defect 

 ii. Frenkel defect 

b. Interstitial atoms 

c. Impurities 

i.  Substitutional Impurity 

    ii.  Interstitial Impurity 

 

        

 2.  Line defects (or) One dimensional defects 

                  a.   Edge dislocation  

                  b.   Screw dislocation 

          

3.   Surface defects (or) Place defects (or) two dimensional defects 

                  a.   Grain boundaries 

                  b.   Tilt boundaries 

                  c.   Twin boundaries 

                  d.   Stacking faults 



 

1. Point defects 

 

Point defect is also called zero dimensional imperfections. In a crystal 

lattice, point defect is one which is completely local in its effect, e.g. a 

vacant lattice site. The introduction of point defect into a crystal 

increases its internal energy as compared to that of the perfect crystal. 

They change the electrical resistance of a crystal. 

 

Point defects are created during crystal growth and application of 

thermal energy, mechanical stress or electric field. Further they are 

created by irradiating the crystal by x-ray, microwaves and light. 

                 

 Different types of point defects are described below. 

 

a. Vacancies 

                        

                      

A vacancy is the simplest point defect in a crystal. This refers to a 

missing atom (or) a vacant atomic site. Such defects may arise either 

from imperfect packing density crystallization process or from thermal 

vibration of atoms at high temperature.  

Vacancy may also occur if an atom leaves its own site and dissolved 

interstitially into the structures. The vacancies may be single or 

deviancies or trivacancies and so on.  

              

Vacancies are classified into two types as follows. 

(i) Schottky defect 



(ii) Frenkel defect 

 

(i) Schottky defect 

                                                                                      

 

 

 Schottky vacancies refer to the missing of anion and cation. In 

general the missing of pair of ions in ionic crystal is called schottky 

defect. This defect is the combination of one action vacancy and one 

anion vacancy. The concentration of Schottky defect decreases the 

density of the crystal. This type of point defect is dominant in alkali 

halides. 

  

(ii) Frenkel defect 

                      

 

Frenkel vacancies refer to the shift of cation from the regular site to 

interstitial site. As cations are generally the smaller ions, it is possible 

for them to get displaced into the void space present in the lattice.  The 



concentration of Frenkel defects does not change the density of the 

crystal and the overall electrical neutrality of the crystal. The point 

defect in silver halides and calcium fluoride are of the Frenkel type. 

 

 

b.Interstitial atoms 

 

                  

 

                

This is an extra atom inserted into the voids between the regularly 

occupied sites. Thus such an atom does not occupy regular lattice sites. 

This extra tom may be an impurity atom or an atom of the same types as 

on the regular lattice sites. 

 

C. Impurities 

 

This is a defect in which a foreign atom occupies a regular lattice site.  

Foreign atoms generally have atomic radii and electronic structures 

differing from those of the host atoms and therefore act as centers of 

distortion. 

                  

Basically there are two types of impurity defects. 



i. Subtitutional impurity  refers to a foreign atom substitutes or 

replaces a parent atom in the lattice. 

                                             

Example:  In the case of semiconductor technology, Aluminum and 

phosphorus doped in silicon are substitutional impurities in the crystal. 

        

ii. Interstitial impurity is a small sized atom occupying the void space 

in the parent crystal, without dislodging any of the parent atoms from 

their sites. An atom can enter the interstitial or void space only when it 

is substantially smaller than the parent atom. 

 

                                        

  

Example:  Presence of carbon in iron 

 

2. Line defects 

  

 Line defects are called dislocations. A dislocation may be 

defined as a disturbed region between two substantially perfect parts of 

a crystal. It is a line defect in a crystal structure whereby a part-plane of 

atoms is displaced from its symmetrically stable positions in the array. 

Dislocation is the region of localized lattice disturbance separating the 

slipped and unslipped regions of a crystal. Movement of dislocation is 

necessary for plastic deformation. 



The two basic types of dislocations are: 

a) Edge dislocation 

b) Screw dislocation 

a)  Edge dislocation 

                                   

               

An edge dislocation is a defect where an extra half-plane of atoms is 

introduced mid way through the crystal, distorting nearby planes of 

atoms. When enough force is applied from one side of the crystal 

structure, this extra plane passes through planes of atoms breaking and 

joining bonds with them until it reaches the grain boundary.  

 

b) Screw dislocation 

                                                                 

 

             



Screw dislocation results from a displacement of the atoms in one part 

of a crystal relative to the rest of the crystal, forming a spiral ramp 

around the dislocation line. When the atoms are displaced in two 

separate planes perpendicular to each other, the imperfection produced 

is called screw dislocation. 

The diagram shows what happens when one part of the crystal is 

displaced relative to the rest of the crystal and the displacement 

terminates within the crystal. The row of atoms marking the termination 

of the displacement is the screw dislocation. 

3. Surface Defects

The defects, which take place on the surface of a material, are known as 

surface defects or plane defects. The surface defects take place either 

due to imperfect packing of atoms during crystallization or defective 

orientation of the surface. 

a. Grain Boundary

It is a general planar defect that separates regions of different crystalline 

orientation (i.e., grains) within a polycrystalline solid. The atoms in the 

grain boundary will not be in perfect crystalline arrangement. Grain 

boundaries are observed during the solidification of polycrystalline 

material. Grain boundary area depends on the grain size of the material 

and increases with decrease in grain size and vice versa. 



 

b. Tilt Boundaries 

 

                                    

 

It is also called as a small angle boundary as the orientation of grains in 

two neighboring crystals differs by only a few degrees. By rotation of 

an axis in the boundary it is possible to bring the axis of two ordering 

grains into coincidence, i.e, a tilt boundary, in which case 

Tan θ = b/h (or) θ = b/h 

Where, b is the length of the Burgers vector 

            h is the vertical spacing between two neighbouring edge 

dislocations. 

  θ is the angle of tilt  

 

          These defects affect the deformation behavior, mechanical 

properties and recrystallisation temperature of materials. They also have 

an influence on electrical properties and corrosion resistance. 

 

 

 

 

 

 

 

 

 



c. Twin boundaries 

                  

A ‘twin’ is an area defect wherein a mirror image of the regular lattice is 

formed during the growth of the silicon ingot, usually caused by a 

perturbation.  The twin boundary is the mirror plane of the twin 

formation. 

 

d. Stacking faults 

 A defect in a face – centered cubic or hexagonal close – packed 

crystal in which there is a change from the regular sequence of positions 

of atomic planes is called stacking fault.   

 

 

 

                               

For example in the case of closed packed FCC structure the stacking 

sequence can be written as ABC ABC ….. In that sequence, it is 



possible in one atom layer ‘A’ the atoms are not positioned properly in a 

small region and hence deviates from the sequence, relative to the atoms 

of the layers above and below giving a defect, since now there is 

sequence of ABAB… which belongs to HCP structure instead of ABC 

ABC…. 

The above diagram shows the stacking fault in FCC metal. So stacking 

fault arise when there is only small dissimilarity between the stacking 

sequences of closed planes in FCC and HCP metals. Stacking faults are 

more frequently found in deformed metals than in annealed metals. 

 

 

 

 



LEARNING ACTIVITY  

1. What is crystalline solids. 

2. What is braves lattice. 

3. Derive the expression for co ordination number for /Sc and 

FCC structure. 

4. Derive an expression for packing factor of HCP structure.  

Note: 

a) Write your answer in the space given below. 

b) Check the answer with your academic counsellor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

In this chapter, we studied the types of solids with examples. Also detail 

studied about  crystal structure of various compounds. 




